Difference between revisions of "2013 AMC 10B Problems/Problem 15"

m (Solution 1)
 
(22 intermediate revisions by 8 users not shown)
Line 5: Line 5:
 
<math> \textbf{(A)}\ 1\qquad\textbf{(B)}\ \frac{\sqrt{6}}{2}\qquad\textbf{(C)}\ \sqrt{3} \qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ \frac{3\sqrt{2}}{2} </math>
 
<math> \textbf{(A)}\ 1\qquad\textbf{(B)}\ \frac{\sqrt{6}}{2}\qquad\textbf{(C)}\ \sqrt{3} \qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ \frac{3\sqrt{2}}{2} </math>
  
==Solution==
+
==Solution 1==
  
We have that <math>\frac{(\frac{a}{3})^2\sqrt3 }{4}=\frac{3(\frac{b}{6})^2\sqrt3){2}</math>.  Simplifying, we get that <math>\frac{a^2}{b^2}=\frac{3}{2}</math>. Taking the square root and rationalizing the denominator, we see that <math>\frac{a}{b}=\boxed{\textbf{(B) }\frac{\sqrt6}{2}}</math>.
+
Using the area formulas for an equilateral triangle <math>\left(\frac{{s}^{2}\sqrt{3}}{4}\right)</math> and regular hexagon <math>\left(\frac{3{s}^{2}\sqrt{3}}{2}\right)</math> with side length <math>s</math>, plugging <math>\frac{a}{3}</math> and <math>\frac{b}{6}</math> into each equation, we find that <math>\frac{{a}^{2}\sqrt{3}}{36}=\frac{{b}^{2}\sqrt{3}}{24}</math>. Simplifying this, we get <math>\frac{a}{b}=\boxed{\textbf{(B)} \frac{\sqrt{6}}{2}}</math>
 +
 
 +
==Solution 2==
 +
The regular hexagon can be broken into 6 small equilateral triangles, each of which is similar to the big equilateral triangle. The big triangle's area is 6 times the area of one of the little triangles. Therefore each side of the big triangle is <math>\sqrt{6}</math> times the side of the small triangle. The desired ratio is <math>\frac{3\sqrt{6}}{6}=\frac{\sqrt{6}}{2}\Rightarrow(B).</math>
 +
 
 +
== See also ==
 +
{{AMC10 box|year=2013|ab=B|num-b=14|num-a=16}}
 +
 
 +
[[Category:Introductory Geometry Problems]]
 +
[[Category:Area Problems]]
 +
{{MAA Notice}}

Latest revision as of 11:18, 18 October 2022

Problem

A wire is cut into two pieces, one of length $a$ and the other of length $b$. The piece of length $a$ is bent to form an equilateral triangle, and the piece of length $b$ is bent to form a regular hexagon. The triangle and the hexagon have equal area. What is $\frac{a}{b}$?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ \frac{\sqrt{6}}{2}\qquad\textbf{(C)}\ \sqrt{3} \qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ \frac{3\sqrt{2}}{2}$

Solution 1

Using the area formulas for an equilateral triangle $\left(\frac{{s}^{2}\sqrt{3}}{4}\right)$ and regular hexagon $\left(\frac{3{s}^{2}\sqrt{3}}{2}\right)$ with side length $s$, plugging $\frac{a}{3}$ and $\frac{b}{6}$ into each equation, we find that $\frac{{a}^{2}\sqrt{3}}{36}=\frac{{b}^{2}\sqrt{3}}{24}$. Simplifying this, we get $\frac{a}{b}=\boxed{\textbf{(B)} \frac{\sqrt{6}}{2}}$

Solution 2

The regular hexagon can be broken into 6 small equilateral triangles, each of which is similar to the big equilateral triangle. The big triangle's area is 6 times the area of one of the little triangles. Therefore each side of the big triangle is $\sqrt{6}$ times the side of the small triangle. The desired ratio is $\frac{3\sqrt{6}}{6}=\frac{\sqrt{6}}{2}\Rightarrow(B).$

See also

2013 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png