Difference between revisions of "2013 AMC 10A Problems/Problem 3"

(Redirected page to 2013 AMC 12A Problems/Problem 1)
(Tag: New redirect)
 
(7 intermediate revisions by 5 users not shown)
Line 1: Line 1:
Square <math> ABCD </math> has side length <math>10</math>. Point <math>E</math> is on <math>\overline{BC}</math>, and the area of <math> \triangle ABE </math>
+
#redirect [[2013 AMC 12A Problems/Problem 1]]
is <math>40</math>. What is <math> BE </math>?
 
 
 
[asy]
 
size(150);
 
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps);
 
draw((0,0)--(0,10)--(10,10)--(10,0)--(0,0)--(6,10));
 
dot((0,0));
 
dot((0,10));
 
dot((10,10));
 
dot((10,0));
 
dot((6,10));
 
label("<math>A</math>",(0,0),SW);
 
label("<math>B</math>",(0,10),NW);
 
label("<math>C</math>",(10,10),NE);
 
label("<math>D</math>",(10,0),SE);
 
label("<math>E</math>",(6,10),N);[/asy]
 
 
 
 
 
<math> \textbf{(A)}\ 4\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 6\qquad\textbf{(D)}\ 7\qquad\textbf{(E)}\ 8 </math>
 
 
 
We know that the area of <math>\triangle ABC</math> is equal to <math>\frac{AB(BE)}{2}</math>.  Plugging in <math>AB=10</math>, we get <math>80 = 10BE</math>.  Dividing, we find that <math>BE=8</math>, <math>\textbf{(E)}</math>
 

Latest revision as of 22:18, 23 November 2020