Difference between revisions of "2001 AMC 10 Problems/Problem 5"
Anthonyjang (talk | contribs) (→Solution) |
|||
(5 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | How many of the twelve pentominoes pictured below at least one line of symmetry? | + | How many of the twelve pentominoes pictured below have at least one line of reflectional symmetry? |
− | <math> \textbf{(A)} | + | <asy> |
+ | unitsize(5mm); | ||
+ | defaultpen(linewidth(1pt)); | ||
+ | draw(shift(2,0)*unitsquare); | ||
+ | draw(shift(2,1)*unitsquare); | ||
+ | draw(shift(2,2)*unitsquare); | ||
+ | draw(shift(1,2)*unitsquare); | ||
+ | draw(shift(0,2)*unitsquare); | ||
+ | draw(shift(2,4)*unitsquare); | ||
+ | draw(shift(2,5)*unitsquare); | ||
+ | draw(shift(2,6)*unitsquare); | ||
+ | draw(shift(1,5)*unitsquare); | ||
+ | draw(shift(0,5)*unitsquare); | ||
+ | draw(shift(4,8)*unitsquare); | ||
+ | draw(shift(3,8)*unitsquare); | ||
+ | draw(shift(2,8)*unitsquare); | ||
+ | draw(shift(1,8)*unitsquare); | ||
+ | draw(shift(0,8)*unitsquare); | ||
+ | draw(shift(6,8)*unitsquare); | ||
+ | draw(shift(7,8)*unitsquare); | ||
+ | draw(shift(8,8)*unitsquare); | ||
+ | draw(shift(9,8)*unitsquare); | ||
+ | draw(shift(9,9)*unitsquare); | ||
+ | draw(shift(6,5)*unitsquare); | ||
+ | draw(shift(7,5)*unitsquare); | ||
+ | draw(shift(8,5)*unitsquare); | ||
+ | draw(shift(7,6)*unitsquare); | ||
+ | draw(shift(7,4)*unitsquare); | ||
+ | draw(shift(6,1)*unitsquare); | ||
+ | draw(shift(7,1)*unitsquare); | ||
+ | draw(shift(8,1)*unitsquare); | ||
+ | draw(shift(6,0)*unitsquare); | ||
+ | draw(shift(7,2)*unitsquare); | ||
+ | draw(shift(11,8)*unitsquare); | ||
+ | draw(shift(12,8)*unitsquare); | ||
+ | draw(shift(13,8)*unitsquare); | ||
+ | draw(shift(14,8)*unitsquare); | ||
+ | draw(shift(13,9)*unitsquare); | ||
+ | draw(shift(11,5)*unitsquare); | ||
+ | draw(shift(12,5)*unitsquare); | ||
+ | draw(shift(13,5)*unitsquare); | ||
+ | draw(shift(11,6)*unitsquare); | ||
+ | draw(shift(13,4)*unitsquare); | ||
+ | draw(shift(11,1)*unitsquare); | ||
+ | draw(shift(12,1)*unitsquare); | ||
+ | draw(shift(13,1)*unitsquare); | ||
+ | draw(shift(13,2)*unitsquare); | ||
+ | draw(shift(14,2)*unitsquare); | ||
+ | draw(shift(16,8)*unitsquare); | ||
+ | draw(shift(17,8)*unitsquare); | ||
+ | draw(shift(18,8)*unitsquare); | ||
+ | draw(shift(17,9)*unitsquare); | ||
+ | draw(shift(18,9)*unitsquare); | ||
+ | draw(shift(16,5)*unitsquare); | ||
+ | draw(shift(17,6)*unitsquare); | ||
+ | draw(shift(18,5)*unitsquare); | ||
+ | draw(shift(16,6)*unitsquare); | ||
+ | draw(shift(18,6)*unitsquare); | ||
+ | draw(shift(16,0)*unitsquare); | ||
+ | draw(shift(17,0)*unitsquare); | ||
+ | draw(shift(17,1)*unitsquare); | ||
+ | draw(shift(18,1)*unitsquare); | ||
+ | draw(shift(18,2)*unitsquare);</asy> | ||
+ | |||
+ | <math>\textbf{(A) } 3 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 5 \qquad\textbf{(D) } 6 \qquad\textbf{(E) } 7</math> | ||
== Solution == | == Solution == | ||
Line 11: | Line 75: | ||
The ones with lines over the shapes have at least one line of symmetry. Counting the number of shapes that have line(s) on them, | The ones with lines over the shapes have at least one line of symmetry. Counting the number of shapes that have line(s) on them, | ||
we find <math> \boxed{\textbf{(D)}\ 6} </math> pentominoes. | we find <math> \boxed{\textbf{(D)}\ 6} </math> pentominoes. | ||
+ | |||
+ | ==Video Solution by Daily Dose of Math== | ||
+ | |||
+ | https://youtu.be/svFpNvUUY7E?si=CloMWtqbbhBNgWy_ | ||
+ | |||
+ | ~Thesmartgreekmathdude | ||
== See Also == | == See Also == | ||
{{AMC10 box|year=2001|num-b=4|num-a=6}} | {{AMC10 box|year=2001|num-b=4|num-a=6}} | ||
+ | {{MAA Notice}} |
Latest revision as of 15:11, 15 July 2024
Problem
How many of the twelve pentominoes pictured below have at least one line of reflectional symmetry?
Solution
The ones with lines over the shapes have at least one line of symmetry. Counting the number of shapes that have line(s) on them, we find pentominoes.
Video Solution by Daily Dose of Math
https://youtu.be/svFpNvUUY7E?si=CloMWtqbbhBNgWy_
~Thesmartgreekmathdude
See Also
2001 AMC 10 (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.