Difference between revisions of "2005 AMC 8 Problems/Problem 7"

(Created page with "==Problem== Bill walks <math>\tfrac12</math> mile south, then <math>\tfrac34</math> mile east, and finally <math>\tfrac12</math> mile south. How many miles is he, in a direct lin...")
 
m (Solution)
 
(One intermediate revision by one other user not shown)
Line 18: Line 18:
 
Find the length of the diagonal of the rectangle to find the length of the direct line to the starting time using Pythagorean Theorem.
 
Find the length of the diagonal of the rectangle to find the length of the direct line to the starting time using Pythagorean Theorem.
  
<cmath>\sqrt{(\frac12+\frac12)^2+(\frac34)^2} = \sqrt{1+\frac{9}{16}} = \sqrt{\frac{25}{16}} = \frac54 = \boxed{\textbf{(B)}\ 1 \tfrac14}</cmath>
+
<cmath>\sqrt{\left(\frac12+\frac12\right)^2+\left(\frac34\right)^2} = \sqrt{1+\frac{9}{16}} = \sqrt{\frac{25}{16}} = \frac54 = \boxed{\textbf{(B)}\ 1 \tfrac14}</cmath>
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2005|num-b=6|num-a=8}}
 
{{AMC8 box|year=2005|num-b=6|num-a=8}}
 +
{{MAA Notice}}

Latest revision as of 18:24, 15 December 2020

Problem

Bill walks $\tfrac12$ mile south, then $\tfrac34$ mile east, and finally $\tfrac12$ mile south. How many miles is he, in a direct line, from his starting point?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 1\tfrac14\qquad\textbf{(C)}\ 1\tfrac12\qquad\textbf{(D)}\ 1\tfrac34\qquad\textbf{(E)}\ 2$

Solution

Draw a picture.

[asy] unitsize(3cm); draw((0,0)--(0,-.5)--(.75,-.5)--(.75,-1),linewidth(1pt)); label("$\frac12$",(0,0)--(0,-.5),W); label("$\frac12$",(.75,-.5)--(.75,-1),E); label("$\frac34$",(.75,-.5)--(0,-.5),N); draw((0,0)--(.75,0)--(.75,-1)--(0,-1)--cycle,gray); [/asy]

Find the length of the diagonal of the rectangle to find the length of the direct line to the starting time using Pythagorean Theorem.

\[\sqrt{\left(\frac12+\frac12\right)^2+\left(\frac34\right)^2} = \sqrt{1+\frac{9}{16}} = \sqrt{\frac{25}{16}} = \frac54 = \boxed{\textbf{(B)}\ 1 \tfrac14}\]

See Also

2005 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png