Difference between revisions of "1980 AHSME Problems/Problem 5"
Mrdavid445 (talk | contribs) (Created page with "==Problem== If <math>AB</math> and <math>CD</math> are perpendicular diameters of circle <math>Q</math>, <math>P</math> in <math>\overline{AQ}</math>, and <math>\measuredangle Q...") |
|||
(One intermediate revision by one other user not shown) | |||
Line 16: | Line 16: | ||
<math> \text{(A)} \ \frac{\sqrt{3}}{2} \qquad \text{(B)} \ \frac{\sqrt{3}}{3} \qquad \text{(C)} \ \frac{\sqrt{2}}{2} \qquad \text{(D)} \ \frac12 \qquad \text{(E)} \ \frac23 </math> | <math> \text{(A)} \ \frac{\sqrt{3}}{2} \qquad \text{(B)} \ \frac{\sqrt{3}}{3} \qquad \text{(C)} \ \frac{\sqrt{2}}{2} \qquad \text{(D)} \ \frac12 \qquad \text{(E)} \ \frac23 </math> | ||
+ | |||
+ | == Solution == | ||
+ | |||
+ | We find that <math> m\angle PCQ=30^\circ </math>. Because it is a <math> 30^\circ-60^\circ-90^\circ </math> right triangle, we can let <math> PQ=x </math>, so <math> CQ=AQ=x\sqrt{3} </math>. Thus, <math> \frac{PQ}{AQ}=\frac{x}{x\sqrt{3}}=\frac{\sqrt{3}}{3}\Rightarrow\boxed{(B)} </math>. | ||
+ | |||
+ | |||
+ | == See also == | ||
+ | {{AHSME box|year=1980|num-b=4|num-a=6}} | ||
+ | {{MAA Notice}} |
Latest revision as of 11:47, 5 July 2013
Problem
If and are perpendicular diameters of circle , in , and , then the length of divided by the length of is
Solution
We find that . Because it is a right triangle, we can let , so . Thus, .
See also
1980 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.