Difference between revisions of "1974 AHSME Problems/Problem 25"

(Created page with "==Problem== In parallelogram <math> ABCD </math> of the accompanying diagram, line <math> DP </math> is drawn bisecting <math> BC </math> at <math> N </math> and meeting <math> A...")
 
 
(One intermediate revision by one other user not shown)
Line 29: Line 29:
 
==See Also==
 
==See Also==
 
{{AHSME box|year=1974|num-b=24|num-a=26}}
 
{{AHSME box|year=1974|num-b=24|num-a=26}}
 +
[[Category:Introductory Geometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 11:44, 5 July 2013

Problem

In parallelogram $ABCD$ of the accompanying diagram, line $DP$ is drawn bisecting $BC$ at $N$ and meeting $AB$ (extended) at $P$. From vertex $C$, line $CQ$ is drawn bisecting side $AD$ at $M$ and meeting $AB$ (extended) at $Q$. Lines $DP$ and $CQ$ meet at $O$. If the area of parallelogram $ABCD$ is $k$, then the area of the triangle $QPO$ is equal to

[asy] size((400)); draw((0,0)--(5,0)--(6,3)--(1,3)--cycle); draw((6,3)--(-5,0)--(10,0)--(1,3)); label("A", (0,0), S); label("B", (5,0), S); label("C", (6,3), NE); label("D", (1,3), NW); label("P", (10,0), E); label("Q", (-5,0), W); label("M", (.5,1.5), NW); label("N", (5.65, 1.5), NE); label("O", (3.4,1.75));[/asy]

$\mathrm{(A)\ } k \qquad \mathrm{(B) \ }\frac{6k}{5} \qquad \mathrm{(C) \  } \frac{9k}{8} \qquad \mathrm{(D) \  } \frac{5k}{4} \qquad \mathrm{(E) \  }2k$

Solution

Note that \[[QPO]=[QAM]+[PBN]+[AMONB]=[AMONB]+[MDC]+[NCD]\]

\[=[AMONB]+[MDC]+[NOC]+[DOC]=[ABCD]+[DOC]=k+[DOC].\]

Also, note that $DCNM$ is a parallelogram, and so $[DOC]=\frac{1}{4}[DCNM]=\frac{1}{8}[ABCD]=\frac{k}{8}$.

Therefore, $[QPO]=k+\frac{k}{8}=\frac{9k}{8}, \boxed{\text{C}}$.

See Also

1974 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Problem 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png