Difference between revisions of "1974 AHSME Problems/Problem 10"
(Created page with " ==Solution== Expanding, we have <math> 2kx^2-8x-x^2+6=0 </math>, or <math> (2k-1)x^2-8x+6=0 </math>. For this quadratic not to have real roots, it must have a negative discrimi...") |
(→Problem) |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | <!-- don't remove the following tag, for PoTW on the Wiki front page--><onlyinclude>What is the smallest integral value of <math> k </math> such that | ||
+ | <cmath> 2x(kx-4)-x^2+6=0 </cmath> | ||
+ | has no real roots?<!-- don't remove the following tag, for PoTW on the Wiki front page--></onlyinclude> | ||
+ | <math> \mathrm{(A)\ } -1 \qquad \mathrm{(B) \ }2 \qquad \mathrm{(C) \ } 3 \qquad \mathrm{(D) \ } 4 \qquad \mathrm{(E) \ }5 </math> | ||
==Solution== | ==Solution== | ||
Expanding, we have <math> 2kx^2-8x-x^2+6=0 </math>, or <math> (2k-1)x^2-8x+6=0 </math>. For this quadratic not to have real roots, it must have a negative discriminant. Therefore, <math> (-8)^2-4(2k-1)(6)<0\implies 64-48k+24<0\implies k>\frac{11}{6} </math>. From here, we can easily see that the smallest integral value of <math> k </math> is <math> 2, \boxed{\text{B}} </math>. | Expanding, we have <math> 2kx^2-8x-x^2+6=0 </math>, or <math> (2k-1)x^2-8x+6=0 </math>. For this quadratic not to have real roots, it must have a negative discriminant. Therefore, <math> (-8)^2-4(2k-1)(6)<0\implies 64-48k+24<0\implies k>\frac{11}{6} </math>. From here, we can easily see that the smallest integral value of <math> k </math> is <math> 2, \boxed{\text{B}} </math>. | ||
+ | |||
+ | ==See Also== | ||
+ | {{AHSME box|year=1974|num-b=9|num-a=11}} | ||
+ | [[Category:Introductory Algebra Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 16:14, 18 November 2015
Problem
What is the smallest integral value of such that has no real roots?
Solution
Expanding, we have , or . For this quadratic not to have real roots, it must have a negative discriminant. Therefore, . From here, we can easily see that the smallest integral value of is .
See Also
1974 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.