Difference between revisions of "1974 AHSME Problems/Problem 9"

(Created page with "==Problem== The integers greater than one are arranged in five columns as follows: <cmath> \begin{tabular}{c c c c c}\ & 2 & 3 & 4 & 5\\ 9 & 8 & 7 & 6 &\ \\ \ & 10 & 11 & 12 & 1...")
 
 
(One intermediate revision by one other user not shown)
Line 19: Line 19:
 
==See Also==
 
==See Also==
 
{{AHSME box|year=1974|num-b=8|num-a=10}}
 
{{AHSME box|year=1974|num-b=8|num-a=10}}
 +
[[Category:Introductory Number Theory Problems]]
 +
{{MAA Notice}}

Latest revision as of 11:42, 5 July 2013

Problem

The integers greater than one are arranged in five columns as follows:

\[\begin{tabular}{c c c c c}\ & 2 & 3 & 4 & 5\\ 9 & 8 & 7 & 6 &\ \\ \ & 10 & 11 & 12 & 13\\ 17 & 16 & 15 & 14 &\ \\ \ & . & . & . & .\\ \end{tabular}\]

(Four consecutive integers appear in each row; in the first, third and other odd numbered rows, the integers appear in the last four columns and increase from left to right; in the second, fourth and other even numbered rows, the integers appear in the first four columns and increase from right to left.)

In which column will the number $1,000$ fall?

$\mathrm{(A)\ } \text{first} \qquad \mathrm{(B) \ }\text{second} \qquad \mathrm{(C) \  } \text{third} \qquad \mathrm{(D) \  } \text{fourth} \qquad \mathrm{(E) \  }\text{fifth}$

Solution

We try pairing numbers with the column number they're in.

\[\begin{tabular}{c c}\ \text{Number} & \text{Column Number} \\ 2 & 2\\ 3 & 3\\ 4 & 4\\ 5 & 5\\ 6 & 4\\ 7 & 3\\ 8 & 2\\ 9 & 1\\ 10 & 2\\ 11 & 3\\ 12 & 4\\ \end{tabular}\]

Now we can see a pattern. The column number starts at $2$, goes up to $5$, then goes back down to $1$, and repeats. Each of these blocks has a length of $7$, so the column number has a period of $8$. Since $1000\equiv8(\bmod\,8)$, $1000$ is in the same column as $8$, which is the second column. $\boxed{\text{B}}$

See Also

1974 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png