Difference between revisions of "1951 AHSME Problems/Problem 20"

m (Created page with "== Problem == When simplified and expressed with negative exponents, the expression <math> (x \plus{} y)^{ \minus{} 1}(x^{ \minus{} 1} \plus{} y^{ \minus{} 1})</math> is equal to...")
 
m
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
When simplified and expressed with negative exponents, the expression <math> (x \plus{} y)^{ \minus{} 1}(x^{ \minus{} 1} \plus{} y^{ \minus{} 1})</math> is equal to:
+
When simplified and expressed with negative exponents, the expression <math> (x + y)^{ - 1}(x^{ - 1} + y^{ - 1})</math> is equal to:
  
<math> \textbf{(A)}\ x^{ \minus{} 2} \plus{} 2x^{ \minus{} 1}y^{ \minus{} 1} \plus{} y^{ \minus{} 2} \qquad\textbf{(B)}\ x^{ \minus{} 2} \plus{} 2^{ \minus{} 1}x^{ \minus{} 1}y^{ \minus{} 1} \plus{} y^{ \minus{} 2} \qquad\textbf{(C)}\ x^{ \minus{} 1}y^{ \minus{} 1}</math>
+
<math> \textbf{(A)}\ x^{ - 2} + 2x^{ - 1}y^{ - 1} + y^{ - 2} \qquad\textbf{(B)}\ x^{ - 2} + 2^{ - 1}x^{ - 1}y^{ - 1} + y^{ - 2} \qquad\textbf{(C)}\ x^{ - 1}y^{ - 1}</math>
<math> \textbf{(D)}\ x^{ \minus{} 2} \plus{} y^{ \minus{} 2} \qquad\textbf{(E)}\ \frac {1}{x^{ \minus{} 1}y^{ \minus{} 1}}</math>
+
 
 +
<math> \textbf{(D)}\ x^{ - 2} + y^{ - 2} \qquad\textbf{(E)}\ \frac {1}{x^{ - 1}y^{ - 1}}</math>
  
 
== Solution ==  
 
== Solution ==  
{{solution}}
+
Note that <math>(x + y)^{-1}(x^{-1} + y^{-1}) = \dfrac{1}{x + y}\cdot\left(\dfrac{1}{x} + \dfrac{1}{y}\right) = \dfrac{1}{x + y}\cdot\dfrac{x + y}{xy} = \dfrac{1}{xy} = x^{-1}y^{-1}</math>. The answer is <math>\textbf{(C)}</math>.
  
 
== See Also ==
 
== See Also ==
Line 12: Line 13:
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 21:58, 13 March 2015

Problem

When simplified and expressed with negative exponents, the expression $(x + y)^{ - 1}(x^{ - 1} + y^{ - 1})$ is equal to:

$\textbf{(A)}\ x^{ - 2} + 2x^{ - 1}y^{ - 1} + y^{ - 2} \qquad\textbf{(B)}\ x^{ - 2} + 2^{ - 1}x^{ - 1}y^{ - 1} + y^{ - 2} \qquad\textbf{(C)}\ x^{ - 1}y^{ - 1}$

$\textbf{(D)}\ x^{ - 2} + y^{ - 2} \qquad\textbf{(E)}\ \frac {1}{x^{ - 1}y^{ - 1}}$

Solution

Note that $(x + y)^{-1}(x^{-1} + y^{-1}) = \dfrac{1}{x + y}\cdot\left(\dfrac{1}{x} + \dfrac{1}{y}\right) = \dfrac{1}{x + y}\cdot\dfrac{x + y}{xy} = \dfrac{1}{xy} = x^{-1}y^{-1}$. The answer is $\textbf{(C)}$.

See Also

1951 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png