Difference between revisions of "1950 AHSME Problems/Problem 43"
(→Problem) |
|||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | The sum to infinity of <math> \frac{1}{7} | + | The sum to infinity of <math> \frac{1}{7}+\frac {2}{7^2}+\frac{1}{7^3}+\frac{2}{7^4}+\cdots</math> is: |
<math>\textbf{(A)}\ \frac{1}{5} \qquad | <math>\textbf{(A)}\ \frac{1}{5} \qquad | ||
Line 10: | Line 10: | ||
==Solution== | ==Solution== | ||
− | {{ | + | |
+ | Note that this is <math>\frac{1}{7}(1+\frac{1}{49}+\frac{1}{49^2}+...)+\frac{2}{49}(1+\frac{1}{49}+...)=\frac{9}{49}(1+\frac{1}{49}+...)</math>. Using the formula for a geometric series, we find that this is <math>\frac{9}{49}(\frac{1}{1-\frac{1}{49}})=\frac{9}{49}(\frac{1}{\frac{48}{49}})=\frac{9}{49}(\frac{49}{48})=\frac{9}{48}=\frac{3}{16} \Rightarrow \mathrm{(E)}</math> | ||
==See Also== | ==See Also== | ||
Line 16: | Line 17: | ||
[[Category:Introductory Algebra Problems]] | [[Category:Introductory Algebra Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 15:14, 9 May 2015
Problem
The sum to infinity of is:
Solution
Note that this is . Using the formula for a geometric series, we find that this is
See Also
1950 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 42 |
Followed by Problem 44 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.