Difference between revisions of "Mock AIME 2 2006-2007 Problems/Problem 9"
(→Solution) |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | In right triangle <math>ABC,</math> <math>\angle C=90^\circ.</math> Cevians <math>AX</math> and <math>BY</math> intersect at <math>P</math> and are drawn to <math>BC</math> and <math>AC</math> respectively such that <math>\frac{BX}{CX}=\frac23</math> | + | In right triangle <math>ABC,</math> <math>\angle C=90^\circ.</math> Cevians <math>AX</math> and <math>BY</math> intersect at <math>P</math> and are drawn to <math>BC</math> and <math>AC</math> respectively such that <math>\frac{BX}{CX}=\frac23</math>, <math>\frac{AY}{CY}=\sqrt 3,</math> and <math>CY=CX-BX</math>. If <math>\tan \angle APB= -\frac{a+b\sqrt{c}}{d},</math> where <math>a,b,</math> and <math>d</math> are relatively prime and <math>c</math> has no perfect square divisors excluding <math>1,</math> find <math>a+b+c+d.</math> |
==Solution== | ==Solution== | ||
− | {{ | + | <asy> |
+ | import olympiad; | ||
+ | size(200); | ||
+ | defaultpen(linewidth(0.8)); | ||
+ | pair A=(0,6),B=(5,0),C=origin,X=(3,0),Y=A/(sqrt(3)+1); | ||
+ | draw(A--B--C--A--X^^Y--B); | ||
+ | label("$A$",A,N); | ||
+ | label("$B$",B,E); | ||
+ | label("$C$",C,SW); | ||
+ | label("$X$",X,S); | ||
+ | label("$Y$",Y,W); | ||
+ | pair P=extension(A,X,B,Y); | ||
+ | pair D=foot(P,B,C),E=foot(P,A,C); | ||
+ | draw(D--P--E,linetype("4 4")); | ||
+ | draw(rightanglemark(A,C,B,5)^^rightanglemark(A,E,P,5)^^rightanglemark(P,D,B,5)); | ||
+ | label("$D$",D,S); | ||
+ | label("$E$",E,W); | ||
+ | label("$P$",P,0.5(dir(P--B)+dir(P--A))); | ||
+ | </asy> | ||
+ | |||
+ | Define <math>CX=3x</math>, <math>XB=2x</math>, <math>CY=y</math>, and <math>YA=y\sqrt3</math>. Note that <math>CY=CX-BX</math> implies <math>y=3x-2x=x</math>. | ||
+ | |||
+ | Let <math>D</math> and <math>E</math> be the projections of <math>P</math> onto the legs <math>AC</math> and <math>BC</math> respectively. Remark that <math>\tan\angle DPB=\tan \angle CXB=5</math> and <math>\tan\angle APE=\tan\angle AXC=1+\sqrt3</math>, so <cmath>\begin{align*}\tan(\angle DPB+\angle APE)=\dfrac{\tan\angle DPB+\tan\angle APE}{1-\tan\angle DPB\tan\angle APE}=\dfrac{5+1+\sqrt3}{1-5(1+\sqrt3)}=-\dfrac{6+\sqrt3}{4+5\sqrt3}.\end{align*}</cmath> Since <math>\angle APB+(\angle APE+\angle DPB)=270^\circ</math>, we have <cmath>\begin{align*}\tan\angle APB&=\tan[270^\circ-(\angle APE+\angle BPD)]\\&=\cot (\angle APE+\angle BPD)\\&=-\dfrac{4+5\sqrt3}{6+\sqrt3}=-\dfrac{9+26\sqrt3}{33}.\end{align*}</cmath> The requested answer is thus <math>9+26+3+33=\boxed{071}.</math> | ||
==See Also== | ==See Also== | ||
{{Mock AIME box|year=2006-2007|n=2|num-b=8|num-a=10}} | {{Mock AIME box|year=2006-2007|n=2|num-b=8|num-a=10}} |
Latest revision as of 22:22, 3 May 2014
Problem
In right triangle Cevians and intersect at and are drawn to and respectively such that , and . If where and are relatively prime and has no perfect square divisors excluding find
Solution
Define , , , and . Note that implies .
Let and be the projections of onto the legs and respectively. Remark that and , so Since , we have The requested answer is thus
See Also
Mock AIME 2 2006-2007 (Problems, Source) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 |