Difference between revisions of "Two Tangent Theorem"

(Proof 2)
m
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
The two tangent theorem states that given a circle, if P is any point lying outside the circle, and if A and B are points such that PA and PB are tangent to the circle, then PA = PB.
 
The two tangent theorem states that given a circle, if P is any point lying outside the circle, and if A and B are points such that PA and PB are tangent to the circle, then PA = PB.
<geogebra>4f007f927909b27106388aa6339add09df6868c6</geogebra>  
+
<geogebra>4f007f927909b27106388aa6339add09df6868c6</geogebra>  
  
 
== Proofs ==
 
== Proofs ==
Line 9: Line 9:
 
From a simple application of the [[Power of a Point Theorem]], the result follows.
 
From a simple application of the [[Power of a Point Theorem]], the result follows.
  
 +
==See Also==
 +
{{stub}}
 
[[Category:Geometry]]
 
[[Category:Geometry]]
 +
[[Category: Theorems]]

Latest revision as of 21:47, 5 December 2023

The two tangent theorem states that given a circle, if P is any point lying outside the circle, and if A and B are points such that PA and PB are tangent to the circle, then PA = PB. <geogebra>4f007f927909b27106388aa6339add09df6868c6</geogebra>

Proofs

Proof 1

Since $OBP$ and $OAP$ are both right triangles with two equal sides, the third sides are both equal.

Proof 2

From a simple application of the Power of a Point Theorem, the result follows.

See Also

This article is a stub. Help us out by expanding it.