Difference between revisions of "1989 AHSME Problems/Problem 14"

 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
== Problem ==
 +
 
<math>\cot 10+\tan 5=</math>
 
<math>\cot 10+\tan 5=</math>
  
  
 
<math> \mathrm{(A) \csc 5 } \qquad \mathrm{(B) \csc 10 } \qquad \mathrm{(C) \sec 5 } \qquad \mathrm{(D) \sec 10 } \qquad \mathrm{(E) \sin 15 }  </math>
 
<math> \mathrm{(A) \csc 5 } \qquad \mathrm{(B) \csc 10 } \qquad \mathrm{(C) \sec 5 } \qquad \mathrm{(D) \sec 10 } \qquad \mathrm{(E) \sin 15 }  </math>
 +
 +
== Solution ==
  
 
We have  <cmath>\cot 10 +\tan 5=\frac{\cos 10}{\sin 10}+\frac{\sin 5}{\cos 5}=\frac{\cos10\cos5+\sin10\sin5}{\sin10\cos 5}=\frac{\cos(10-5)}{\sin10\cos5}=\frac{\cos5}{\sin10\cos5}=\csc10</cmath>
 
We have  <cmath>\cot 10 +\tan 5=\frac{\cos 10}{\sin 10}+\frac{\sin 5}{\cos 5}=\frac{\cos10\cos5+\sin10\sin5}{\sin10\cos 5}=\frac{\cos(10-5)}{\sin10\cos5}=\frac{\cos5}{\sin10\cos5}=\csc10</cmath>
 +
 +
== See also ==
 +
{{AHSME box|year=1989|num-b=13|num-a=15}} 
 +
 +
[[Category: Introductory Trigonometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 15:11, 25 February 2022

Problem

$\cot 10+\tan 5=$


$\mathrm{(A) \csc 5 } \qquad \mathrm{(B) \csc 10 } \qquad \mathrm{(C) \sec 5 } \qquad \mathrm{(D) \sec 10 } \qquad \mathrm{(E) \sin 15 }$

Solution

We have \[\cot 10 +\tan 5=\frac{\cos 10}{\sin 10}+\frac{\sin 5}{\cos 5}=\frac{\cos10\cos5+\sin10\sin5}{\sin10\cos 5}=\frac{\cos(10-5)}{\sin10\cos5}=\frac{\cos5}{\sin10\cos5}=\csc10\]

See also

1989 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png