Difference between revisions of "1989 AHSME Problems/Problem 14"
(Created page with "<math>\cot 10+\tan 5=</math> <math> \mathrm{(A) \csc 5 } \qquad \mathrm{(B) \csc 10 } \qquad \mathrm{(C) \sec 5 } \qquad \mathrm{(D) \sec 10 } \qquad \mathrm{(E) \sin 15 } </m...") |
Hastapasta (talk | contribs) |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
+ | == Problem == | ||
+ | |||
<math>\cot 10+\tan 5=</math> | <math>\cot 10+\tan 5=</math> | ||
<math> \mathrm{(A) \csc 5 } \qquad \mathrm{(B) \csc 10 } \qquad \mathrm{(C) \sec 5 } \qquad \mathrm{(D) \sec 10 } \qquad \mathrm{(E) \sin 15 } </math> | <math> \mathrm{(A) \csc 5 } \qquad \mathrm{(B) \csc 10 } \qquad \mathrm{(C) \sec 5 } \qquad \mathrm{(D) \sec 10 } \qquad \mathrm{(E) \sin 15 } </math> | ||
+ | |||
+ | == Solution == | ||
+ | |||
+ | We have <cmath>\cot 10 +\tan 5=\frac{\cos 10}{\sin 10}+\frac{\sin 5}{\cos 5}=\frac{\cos10\cos5+\sin10\sin5}{\sin10\cos 5}=\frac{\cos(10-5)}{\sin10\cos5}=\frac{\cos5}{\sin10\cos5}=\csc10</cmath> | ||
+ | |||
+ | == See also == | ||
+ | {{AHSME box|year=1989|num-b=13|num-a=15}} | ||
+ | |||
+ | [[Category: Introductory Trigonometry Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 15:11, 25 February 2022
Problem
Solution
We have
See also
1989 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.