|
|
(15 intermediate revisions by 8 users not shown) |
Line 1: |
Line 1: |
− | ==Problem==
| + | #redirect [[2010 AMC 12B Problems/Problem 17]] |
− | | |
− | The entries in a <math>3 \times 3</math> array include all the digits from 1 through 9, arranged so that the entries in every row and column are in increasing order. How many such arrays are there?
| |
− | | |
− | <math> \textbf{(A)}\ 18\qquad\textbf{(B)}\ 24\qquad\textbf{(C)}\ 36\qquad\textbf{(D)}\ 42\qquad\textbf{(E)}\ 60 </math>
| |
− | | |
− | ==Solution==
| |
− | By the [http://en.wikipedia.org/wiki/Young_tableau#Dimension_of_a_representation hook-length formula], the answer is <math> \frac{9!}{5\cdot 4^{2}\cdot 3^{3}\cdot 2^{2}\cdot 1}= \boxed{\textbf{(D)}\ 42}</math>
| |
− | | |
− | == See also ==
| |
− | {{AMC10 box|year=2010|ab=B|num-b=22|num-a=24}}
| |