Difference between revisions of "2006 AMC 8 Problems/Problem 21"

(Created page with "==Problem== An aquarium has a rectangular base that measures <math>100</math> cm by <math>40</math> cm and has a height of <math>50</math> cm. The aquarium is tilled with water t...")
 
 
(10 intermediate revisions by 8 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
An aquarium has a rectangular base that measures <math>100</math> cm by <math>40</math> cm and has a height of <math>50</math> cm. The aquarium is tilled with water to a  depth of <math>37</math> cm. A rock with volume <math>1000\text{cm}^3</math> is then placed in the aquarium and completely submerged. By how many centimeters does the water level rise?  
+
An aquarium has a rectangular base that measures <math>100</math> cm by <math>40</math> cm and has a height of <math>50</math> cm. The aquarium is filled with water to a  depth of <math>37</math> cm. A rock with volume <math>1000\text{cm}^3</math> is then placed in the aquarium and completely submerged. By how many centimeters does the water level rise?  
  
 
<math> \textbf{(A)}\ 0.25\qquad\textbf{(B)}\ 0.5\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ 1.25\qquad\textbf{(E)}\ 2.5 </math>
 
<math> \textbf{(A)}\ 0.25\qquad\textbf{(B)}\ 0.5\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ 1.25\qquad\textbf{(E)}\ 2.5 </math>
  
 
==Solution==
 
==Solution==
The water level will rise <math>1</math>cm for every <math>100 \cdot 40 = 4000\text{cm}^2</math>. Since <math>1000</math> is <math>\frac{1}{4}</math> of <math>4000</math>, the water will rise <math>\frac{1}{4}\cdot1 = \textbf{(A)}\ 0.25</math>
+
The water level will rise <math>1</math>cm for every <math>100 \cdot 40 = 4000\text{cm}^2</math>. Since <math>1000</math> is <math>\frac{1}{4}</math> of <math>4000</math>, the water will rise <math>\frac{1}{4}\cdot1 = \boxed{\textbf{(A)}\ 0.25}</math>
 +
 
 +
==Video Solution==
 +
 
 +
https://www.youtube.com/watch?v=DNMuW5prOwg  ~David
 +
 
 +
==Video Solution by WhyMath==
 +
https://youtu.be/lqgpczqRklA
 +
 
 +
==See Also==
 +
{{AMC8 box|year=2006|n=II|num-b=20|num-a=22}}
 +
{{MAA Notice}}

Latest revision as of 17:09, 8 November 2024

Problem

An aquarium has a rectangular base that measures $100$ cm by $40$ cm and has a height of $50$ cm. The aquarium is filled with water to a depth of $37$ cm. A rock with volume $1000\text{cm}^3$ is then placed in the aquarium and completely submerged. By how many centimeters does the water level rise?

$\textbf{(A)}\ 0.25\qquad\textbf{(B)}\ 0.5\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ 1.25\qquad\textbf{(E)}\ 2.5$

Solution

The water level will rise $1$cm for every $100 \cdot 40 = 4000\text{cm}^2$. Since $1000$ is $\frac{1}{4}$ of $4000$, the water will rise $\frac{1}{4}\cdot1 = \boxed{\textbf{(A)}\ 0.25}$

Video Solution

https://www.youtube.com/watch?v=DNMuW5prOwg ~David

Video Solution by WhyMath

https://youtu.be/lqgpczqRklA

See Also

2006 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png