ONLINE AMC 8 PREP WITH AOPS
Top scorers around the country use AoPS. Join training courses for beginners and advanced students.
VIEW CATALOG

Difference between revisions of "2011 AMC 8 Problems"

m (Problem 6)
m (Problem 9)
 
(74 intermediate revisions by 33 users not shown)
Line 1: Line 1:
 +
{{AMC8 Problems|year=2011|}}
 
==Problem 1==
 
==Problem 1==
Margie bought <math> 3 </math> apples at a cost of <math> 50 </math> cents per apple. She paid with a 5-dollar bill. How much change did Margie recieve?
+
Margie bought <math> 3 </math> apples at a cost of <math> 50 </math> cents per apple. She paid with a 5-dollar bill. How much change did Margie receive?
  
<math>\text{(A)}\ \textdollar 1.50 \qquad \text{(B)}\ \textdollar 2.00 \qquad \text{(C)}\ \textdollar 2.50 \qquad \text{(D)}\ \textdollar 3.00 \qquad \text{(E)}\ \textdollar 3.50</math>
+
<math>\textbf{(A) }\ \textdollar 1.50 \qquad \textbf{(B) }\ \textdollar 2.00 \qquad \textbf{(C) }\ \textdollar 2.50 \qquad \textbf{(D) }\ \textdollar 3.00 \qquad \textbf{(E) }\ \textdollar 3.50</math>
  
  
Line 8: Line 9:
  
 
==Problem 2==
 
==Problem 2==
Karl's rectangular vegetable garden is <math> 20 </math> feet by <math> 45 </math> feet, and Makenna's is <math> 25 </math> feet by <math> 40 </math> feet. Whose garden is larger in area?
+
Karl's rectangular vegetable garden is <math> 20 </math> feet by <math> 45 </math> feet, and Makenna's is <math> 25 </math> feet by <math> 40 </math> feet. Which of the following statements are true?
  
<math>\text{(A) Karl's garden is larger by 100 square feet.}</math>
+
<math>\textbf{(A) }\text{Karl's garden is larger by 100 square feet.}</math>
  
<math>\text{(B) Karl's garden is larger by 25 square feet.}</math>
+
<math>\textbf{(B) }\text{Karl's garden is larger by 25 square feet.}</math>
 
   
 
   
<math>\text{(C) The gardens are the same size.}</math>  
+
<math>\textbf{(C) }\text{The gardens are the same size.}</math>  
  
<math>\text{(D) Makenna's garden is larger by 25 square feet.}</math>
+
<math>\textbf{(D) }\text{Makenna's garden is larger by 25 square feet.}</math>
  
<math>\text{(E) Makenna's garden is larger by 100 square feet.}</math>
+
<math>\textbf{(E) }\text{Makenna's garden is larger by 100 square feet.}</math>
  
  
Line 25: Line 26:
  
 
==Problem 3==
 
==Problem 3==
 +
Extend the square pattern of 8 black and 17 white square tiles by attaching a border of black tiles around the square. What is the ratio of black tiles to white tiles in the extended pattern?<br />
 +
<asy>
 +
filldraw((0,0)--(5,0)--(5,5)--(0,5)--cycle,white,black);
 +
filldraw((1,1)--(4,1)--(4,4)--(1,4)--cycle,mediumgray,black);
 +
filldraw((2,2)--(3,2)--(3,3)--(2,3)--cycle,white,black);
 +
draw((4,0)--(4,5));
 +
draw((3,0)--(3,5));
 +
draw((2,0)--(2,5));
 +
draw((1,0)--(1,5));
 +
draw((0,4)--(5,4));
 +
draw((0,3)--(5,3));
 +
draw((0,2)--(5,2));
 +
draw((0,1)--(5,1));
 +
</asy>
  
 
+
<math> \textbf{(A) }8:17 \qquad\textbf{(B) }25:49 \qquad\textbf{(C) }36:25 \qquad\textbf{(D) }32:17 \qquad\textbf{(E) }36:17</math>
 
 
  
 
[[2011 AMC 8 Problems/Problem 3|Solution]]
 
[[2011 AMC 8 Problems/Problem 3|Solution]]
Line 34: Line 48:
 
Here is a list of the numbers of fish that Tyler caught in nine outings last summer: <cmath>2,0,1,3,0,3,3,1,2.</cmath> Which statement about the mean, median, and mode is true?
 
Here is a list of the numbers of fish that Tyler caught in nine outings last summer: <cmath>2,0,1,3,0,3,3,1,2.</cmath> Which statement about the mean, median, and mode is true?
  
<math>\text{(A) median} < \text{mean} < \text{mode} \qquad \text{(B) mean} < \text{mode} < \text{median} \\ \\ \text{(C) mean} < \text{median} < \text{mode} \qquad \text{(D) median} < \text{mode} < \text{mean} \\ \\ \text{(E) mode} < \text{median} < \text{mean}</math>
+
<math>\textbf{(A) }\text{median} < \text{mean} < \text{mode} \qquad \textbf{(B) }\text{mean} < \text{mode} < \text{median} \\ \\ \textbf{(C) }\text{mean} < \text{median} < \text{mode} \qquad \textbf{(D) }\text{median} < \text{mode} < \text{mean} \\ \\ \textbf{(E) }\text{mode} < \text{median} < \text{mean}</math>
  
  
Line 42: Line 56:
 
What time was it <math>2011</math> minutes after midnight on January 1, 2011?
 
What time was it <math>2011</math> minutes after midnight on January 1, 2011?
  
<math>\text{(A) January 1 at 9:31PM}</math>
+
<math>\textbf{(A) }\text{January 1 at 9:31 PM}</math>
  
<math>\text{(B) January 1 at 11:51PM}</math>  
+
<math>\textbf{(B) }\text{January 1 at 11:51 PM}</math>  
  
<math>\text{(C) January 2 at 3:11AM}</math>  
+
<math>\textbf{(C) }\text{January 2 at 3:11 AM}</math>  
  
<math>\text{(D) January 2 at 9:31AM}</math>  
+
<math>\textbf{(D) }\text{January 2 at 9:31 AM}</math>  
  
<math>\text{(E) January 2 at 6:01PM}</math>
+
<math>\textbf{(E) }\text{January 2 at 6:01 PM}</math>
  
  
Line 66: Line 80:
 
==Problem 7==
 
==Problem 7==
  
 +
Each of the following four large congruent squares is subdivided into combinations of congruent triangles or rectangles and is partially bolded. What percent of the total area is partially bolded?
 +
 +
<asy>
 +
import graph; size(7.01cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-0.42,xmax=14.59,ymin=-10.08,ymax=5.26;
 +
pair A=(0,0), B=(4,0), C=(0,4), D=(4,4), F=(2,0), G=(3,0), H=(1,4), I=(2,4), J=(3,4), K=(0,-2), L=(4,-2), M=(0,-6), O=(0,-4), P=(4,-4), Q=(2,-2), R=(2,-6), T=(6,4), U=(10,0), V=(10,4), Z=(10,2), A_1=(8,4), B_1=(8,0), C_1=(6,-2), D_1=(10,-2), E_1=(6,-6), F_1=(10,-6), G_1=(6,-4), H_1=(10,-4), I_1=(8,-2), J_1=(8,-6), K_1=(8,-4);
 +
draw(C--H--(1,0)--A--cycle,linewidth(1.6)); draw(M--O--Q--R--cycle,linewidth(1.6)); draw(A_1--V--Z--cycle,linewidth(1.6)); draw(G_1--K_1--J_1--E_1--cycle,linewidth(1.6));
 +
draw(C--D); draw(D--B); draw(B--A); draw(A--C); draw(H--(1,0)); draw(I--F); draw(J--G); draw(C--H,linewidth(1.6)); draw(H--(1,0),linewidth(1.6)); draw((1,0)--A,linewidth(1.6)); draw(A--C,linewidth(1.6)); draw(K--L); draw((4,-6)--L); draw((4,-6)--M); draw(M--K); draw(O--P); draw(Q--R); draw(O--Q); draw(M--O,linewidth(1.6)); draw(O--Q,linewidth(1.6)); draw(Q--R,linewidth(1.6)); draw(R--M,linewidth(1.6)); draw(T--V); draw(V--U); draw(U--(6,0)); draw((6,0)--T); draw((6,2)--Z); draw(A_1--B_1); draw(A_1--Z); draw(A_1--V,linewidth(1.6)); draw(V--Z,linewidth(1.6)); draw(Z--A_1,linewidth(1.6)); draw(C_1--D_1); draw(D_1--F_1); draw(F_1--E_1); draw(E_1--C_1); draw(G_1--H_1); draw(I_1--J_1); draw(G_1--K_1,linewidth(1.6)); draw(K_1--J_1,linewidth(1.6)); draw(J_1--E_1,linewidth(1.6)); draw(E_1--G_1,linewidth(1.6));
 +
dot(A,linewidth(1pt)+ds); dot(B,linewidth(1pt)+ds); dot(C,linewidth(1pt)+ds); dot(D,linewidth(1pt)+ds); dot((1,0),linewidth(1pt)+ds); dot(F,linewidth(1pt)+ds); dot(G,linewidth(1pt)+ds); dot(H,linewidth(1pt)+ds); dot(I,linewidth(1pt)+ds); dot(J,linewidth(1pt)+ds); dot(K,linewidth(1pt)+ds); dot(L,linewidth(1pt)+ds); dot(M,linewidth(1pt)+ds); dot((4,-6),linewidth(1pt)+ds); dot(O,linewidth(1pt)+ds); dot(P,linewidth(1pt)+ds); dot(Q,linewidth(1pt)+ds); dot(R,linewidth(1pt)+ds); dot((6,0),linewidth(1pt)+ds); dot(T,linewidth(1pt)+ds); dot(U,linewidth(1pt)+ds); dot(V,linewidth(1pt)+ds); dot((6,2),linewidth(1pt)+ds); dot(Z,linewidth(1pt)+ds); dot(A_1,linewidth(1pt)+ds); dot(B_1,linewidth(1pt)+ds); dot(C_1,linewidth(1pt)+ds); dot(D_1,linewidth(1pt)+ds); dot(E_1,linewidth(1pt)+ds); dot(F_1,linewidth(1pt)+ds); dot(G_1,linewidth(1pt)+ds); dot(H_1,linewidth(1pt)+ds); dot(I_1,linewidth(1pt)+ds); dot(J_1,linewidth(1pt)+ds); dot(K_1,linewidth(1pt)+ds);
 +
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);</asy>
 +
 +
<math> \textbf{(A)}12\frac{1}{2}\qquad\textbf{(B)}20\qquad\textbf{(C)}25\qquad\textbf{(D)}33\frac{1}{3}\qquad\textbf{(E)}37\frac{1}{2} </math>
  
 
[[2011 AMC 8 Problems/Problem 7|Solution]]
 
[[2011 AMC 8 Problems/Problem 7|Solution]]
Line 80: Line 105:
 
==Problem 9==
 
==Problem 9==
  
 +
Carmen takes a long bike ride on a hilly highway. The graph indicates the miles traveled during the time of her ride. What is Carmen's average speed for her entire ride in miles per hour?
 +
<asy>
 +
import graph; size(8.76cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-3.58,xmax=10.19,ymin=-4.43,ymax=9.63;
 +
draw((0,0)--(0,8)); draw((0,0)--(8,0)); draw((0,1)--(8,1)); draw((0,2)--(8,2)); draw((0,3)--(8,3)); draw((0,4)--(8,4)); draw((0,5)--(8,5)); draw((0,6)--(8,6)); draw((0,7)--(8,7)); draw((1,0)--(1,8)); draw((2,0)--(2,8)); draw((3,0)--(3,8)); draw((4,0)--(4,8)); draw((5,0)--(5,8)); draw((6,0)--(6,8)); draw((7,0)--(7,8)); label("$1$",(0.95,-0.24),SE*lsf); label("$2$",(1.92,-0.26),SE*lsf); label("$3$",(2.92,-0.31),SE*lsf); label("$4$",(3.93,-0.26),SE*lsf); label("$5$",(4.92,-0.27),SE*lsf); label("$6$",(5.95,-0.29),SE*lsf); label("$7$",(6.94,-0.27),SE*lsf); label("$5$",(-0.49,1.22),SE*lsf); label("$10$",(-0.59,2.23),SE*lsf); label("$15$",(-0.61,3.22),SE*lsf); label("$20$",(-0.61,4.23),SE*lsf); label("$25$",(-0.59,5.22),SE*lsf); label("$30$",(-0.59,6.2),SE*lsf); label("$35$",(-0.56,7.18),SE*lsf); draw((0,0)--(1,1),linewidth(1.6)); draw((1,1)--(2,3),linewidth(1.6)); draw((2,3)--(4,4),linewidth(1.6)); draw((4,4)--(7,7),linewidth(1.6)); label("HOURS",(3.41,-0.85),SE*lsf); label("M",(-1.39,5.32),SE*lsf); label("I",(-1.34,4.93),SE*lsf); label("L",(-1.36,4.51),SE*lsf); label("E",(-1.37,4.11),SE*lsf); label("S",(-1.39,3.7),SE*lsf);
 +
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);</asy>
  
 +
<math> \textbf{(A) }2\qquad\textbf{(B) } 2.5\qquad\textbf{(C) } 4\qquad\textbf{(D) } 4.5\qquad\textbf{(E) } 5 </math>
  
 
[[2011 AMC 8 Problems/Problem 9|Solution]]
 
[[2011 AMC 8 Problems/Problem 9|Solution]]
Line 95: Line 126:
 
==Problem 11==
 
==Problem 11==
  
 +
The graph shows the number of minutes studied by both Asha (black bar) and Sasha(grey bar) in one week. On the average, how many more minutes per day did Sasha study than Asha?
 +
<asy>
 +
size(300);
 +
real i;
 +
defaultpen(linewidth(0.8));
 +
draw((0,140)--origin--(220,0));
 +
for(i=1;i<13;i=i+1) {
 +
draw((0,10*i)--(220,10*i));
 +
}
 +
label("$0$",origin,W);
 +
label("$20$",(0,20),W);
 +
label("$40$",(0,40),W);
 +
label("$60$",(0,60),W);
 +
label("$80$",(0,80),W);
 +
label("$100$",(0,100),W);
 +
label("$120$",(0,120),W);
 +
path MonD=(20,0)--(20,60)--(30,60)--(30,0)--cycle,MonL=(30,0)--(30,70)--(40,70)--(40,0)--cycle,TuesD=(60,0)--(60,90)--(70,90)--(70,0)--cycle,TuesL=(70,0)--(70,80)--(80,80)--(80,0)--cycle,WedD=(100,0)--(100,100)--(110,100)--(110,0)--cycle,WedL=(110,0)--(110,120)--(120,120)--(120,0)--cycle,ThurD=(140,0)--(140,80)--(150,80)--(150,0)--cycle,ThurL=(150,0)--(150,110)--(160,110)--(160,0)--cycle,FriD=(180,0)--(180,70)--(190,70)--(190,0)--cycle,FriL=(190,0)--(190,50)--(200,50)--(200,0)--cycle;
 +
fill(MonD,black);
 +
fill(MonL,grey);
 +
fill(TuesD,black);
 +
fill(TuesL,grey);
 +
fill(WedD,black);
 +
fill(WedL,grey);
 +
fill(ThurD,black);
 +
fill(ThurL,grey);
 +
fill(FriD,black);
 +
fill(FriL,grey);
 +
draw(MonD^^MonL^^TuesD^^TuesL^^WedD^^WedL^^ThurD^^ThurL^^FriD^^FriL);
 +
label("M",(30,-5),S);
 +
label("Tu",(70,-5),S);
 +
label("W",(110,-5),S);
 +
label("Th",(150,-5),S);
 +
label("F",(190,-5),S);
 +
label("M",(-25,85),W);
 +
label("I",(-27,75),W);
 +
label("N",(-25,65),W);
 +
label("U",(-25,55),W);
 +
label("T",(-25,45),W);
 +
label("E",(-25,35),W);
 +
label("S",(-26,25),W);</asy>
 +
 +
<math> \textbf{(A)}\ 6\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 12 </math>
  
  
Line 110: Line 183:
 
==Problem 13==
 
==Problem 13==
  
 +
Two congruent squares, <math>ABCD</math> and <math>PQRS</math>, have side length <math>15</math>. They overlap to form the <math>15</math> by <math>25</math> rectangle <math>AQRD</math> shown. What percent of the area of rectangle <math>AQRD</math> is shaded?
 +
<asy>
 +
filldraw((0,0)--(25,0)--(25,15)--(0,15)--cycle,white,black);
 +
label("D",(0,0),S);
 +
label("R",(25,0),S);
 +
label("Q",(25,15),N);
 +
label("A",(0,15),N);
 +
filldraw((10,0)--(15,0)--(15,15)--(10,15)--cycle,mediumgrey,black);
 +
label("S",(10,0),S);
 +
label("C",(15,0),S);
 +
label("B",(15,15),N);
 +
label("P",(10,15),N);</asy>
 +
 +
<math> \textbf{(A)}\ 15\qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 24\qquad\textbf{(E)}\ 25 </math>
  
 
[[2011 AMC 8 Problems/Problem 13|Solution]]
 
[[2011 AMC 8 Problems/Problem 13|Solution]]
Line 160: Line 247:
 
==Problem 19==
 
==Problem 19==
  
 +
How many rectangles are in this figure?
 +
 +
<asy>
 +
pair A,B,C,D,E,F,G,H,I,J,K,L;
 +
A=(0,0);
 +
B=(20,0);
 +
C=(20,20);
 +
D=(0,20);
 +
draw(A--B--C--D--cycle);
 +
E=(-10,-5);
 +
F=(13,-5);
 +
G=(13,5);
 +
H=(-10,5);
 +
draw(E--F--G--H--cycle);
 +
I=(10,-20);
 +
J=(18,-20);
 +
K=(18,13);
 +
L=(10,13);
 +
draw(I--J--K--L--cycle);</asy>
 +
 +
<math> \textbf{(A)}\ 8\qquad\textbf{(B)}\ 9\qquad\textbf{(C)}\ 10\qquad\textbf{(D)}\ 11\qquad\textbf{(E)}\ 12 </math>
  
  
Line 166: Line 274:
 
==Problem 20==
 
==Problem 20==
  
 +
Quadrilateral <math>ABCD</math> is a trapezoid, <math>AD = 15</math>, <math>AB = 50</math>, <math>BC = 20</math>, and the altitude is <math>12</math>. What is the area of the trapezoid?
 +
 +
<asy>
 +
pair A,B,C,D;
 +
A=(3,20);
 +
B=(35,20);
 +
C=(47,0);
 +
D=(0,0);
 +
draw(A--B--C--D--cycle);
 +
dot((0,0));
 +
dot((3,20));
 +
dot((35,20));
 +
dot((47,0));
 +
label("A",A,N);
 +
label("B",B,N);
 +
label("C",C,S);
 +
label("D",D,S);
 +
draw((19,20)--(19,0));
 +
dot((19,20));
 +
dot((19,0));
 +
draw((19,3)--(22,3)--(22,0));
 +
label("12",(21,10),E);
 +
label("50",(19,22),N);
 +
label("15",(1,10),W);
 +
label("20",(41,12),E);</asy>
 +
 +
<math> \textbf{(A) }600\qquad\textbf{(B) }650\qquad\textbf{(C) }700\qquad\textbf{(D) }750\qquad\textbf{(E) }800 </math>
  
  
Line 172: Line 307:
 
==Problem 21==
 
==Problem 21==
  
 +
Students guess that Norb's age is <math>24, 28, 30, 32, 36, 38, 41, 44, 47</math>, and <math>49</math>. Norb says, "At least half of you guessed too low, two of you are off by one, and my age is a prime number." How old is Norb?
 +
 +
<math> \textbf{(A) }29\qquad\textbf{(B) }31\qquad\textbf{(C) }37\qquad\textbf{(D) }43\qquad\textbf{(E) }48 </math>
  
  
Line 178: Line 316:
 
==Problem 22==
 
==Problem 22==
  
 +
What is the '''tens''' digit of <math>7^{2011}</math>?
  
 +
<math> \textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }3\qquad\textbf{(D) }4\qquad\textbf{(E) }7 </math>
  
  
Line 185: Line 325:
 
==Problem 23==
 
==Problem 23==
  
 +
How many 4-digit positive integers have four different digits, where the leading digit is not zero, the integer is a multiple of 5, and 5 is the largest digit?
 +
 +
<math> \textbf{(A) }24\qquad\textbf{(B) }48\qquad\textbf{(C) }60\qquad\textbf{(D) }84\qquad\textbf{(E) }108 </math>
  
  
Line 190: Line 333:
  
 
==Problem 24==
 
==Problem 24==
 +
 +
In how many ways can 10001 be written as the sum of two primes?
 +
 +
<math> \textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }4 </math>
  
  
Line 198: Line 345:
  
 
<asy>
 
<asy>
filldraw((-1,-1)--(-1,1)--(1,1)--(1,-1)--cycle,mediumgray,black);
+
filldraw((-1,-1)--(-1,1)--(1,1)--(1,-1)--cycle,gray,black);
 
filldraw(Circle((0,0),1), mediumgray,black);
 
filldraw(Circle((0,0),1), mediumgray,black);
 
filldraw((-1,0)--(0,1)--(1,0)--(0,-1)--cycle,white,black);</asy>
 
filldraw((-1,0)--(0,1)--(1,0)--(0,-1)--cycle,white,black);</asy>
Line 206: Line 353:
  
 
[[2011 AMC 8 Problems/Problem 25|Solution]]
 
[[2011 AMC 8 Problems/Problem 25|Solution]]
 +
 +
==See Also==
 +
{{AMC8 box|year=2011|before=[[2010 AMC 8 Problems|2010 AMC 8]]|after=[[2012 AMC 8 Problems|2012 AMC 8]]}}
 +
* [[AMC 8]]
 +
* [[AMC 8 Problems and Solutions]]
 +
* [[Mathematics competition resources]]
 +
 +
 +
{{MAA Notice}}

Latest revision as of 16:34, 9 January 2024

2011 AMC 8 (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 1 point for each correct answer. There is no penalty for wrong answers.
  3. No aids are permitted other than plain scratch paper, writing utensils, ruler, and erasers. In particular, graph paper, compass, protractor, calculators, computers, smartwatches, and smartphones are not permitted. Rules
  4. Figures are not necessarily drawn to scale.
  5. You will have 40 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

Margie bought $3$ apples at a cost of $50$ cents per apple. She paid with a 5-dollar bill. How much change did Margie receive?

$\textbf{(A) }\ \textdollar 1.50 \qquad \textbf{(B) }\ \textdollar 2.00 \qquad \textbf{(C) }\ \textdollar 2.50 \qquad \textbf{(D) }\ \textdollar 3.00 \qquad \textbf{(E) }\ \textdollar 3.50$


Solution

Problem 2

Karl's rectangular vegetable garden is $20$ feet by $45$ feet, and Makenna's is $25$ feet by $40$ feet. Which of the following statements are true?

$\textbf{(A) }\text{Karl's garden is larger by 100 square feet.}$

$\textbf{(B) }\text{Karl's garden is larger by 25 square feet.}$

$\textbf{(C) }\text{The gardens are the same size.}$

$\textbf{(D) }\text{Makenna's garden is larger by 25 square feet.}$

$\textbf{(E) }\text{Makenna's garden is larger by 100 square feet.}$


Solution

Problem 3

Extend the square pattern of 8 black and 17 white square tiles by attaching a border of black tiles around the square. What is the ratio of black tiles to white tiles in the extended pattern?
[asy] filldraw((0,0)--(5,0)--(5,5)--(0,5)--cycle,white,black); filldraw((1,1)--(4,1)--(4,4)--(1,4)--cycle,mediumgray,black); filldraw((2,2)--(3,2)--(3,3)--(2,3)--cycle,white,black); draw((4,0)--(4,5)); draw((3,0)--(3,5)); draw((2,0)--(2,5)); draw((1,0)--(1,5)); draw((0,4)--(5,4)); draw((0,3)--(5,3)); draw((0,2)--(5,2)); draw((0,1)--(5,1)); [/asy]

$\textbf{(A) }8:17 \qquad\textbf{(B) }25:49 \qquad\textbf{(C) }36:25 \qquad\textbf{(D) }32:17 \qquad\textbf{(E) }36:17$

Solution

Problem 4

Here is a list of the numbers of fish that Tyler caught in nine outings last summer: \[2,0,1,3,0,3,3,1,2.\] Which statement about the mean, median, and mode is true?

$\textbf{(A) }\text{median} < \text{mean} < \text{mode} \qquad \textbf{(B) }\text{mean} < \text{mode} < \text{median} \\ \\ \textbf{(C) }\text{mean} < \text{median} < \text{mode} \qquad \textbf{(D) }\text{median} < \text{mode} < \text{mean} \\ \\ \textbf{(E) }\text{mode} < \text{median} < \text{mean}$


Solution

Problem 5

What time was it $2011$ minutes after midnight on January 1, 2011?

$\textbf{(A) }\text{January 1 at 9:31 PM}$

$\textbf{(B) }\text{January 1 at 11:51 PM}$

$\textbf{(C) }\text{January 2 at 3:11 AM}$

$\textbf{(D) }\text{January 2 at 9:31 AM}$

$\textbf{(E) }\text{January 2 at 6:01 PM}$


Solution

Problem 6

In a town of 351 adults, every adult owns a car, motorcycle, or both. If 331 adults own cars and 45 adults own motorcycles, how many of the car owners do not own a motorcycle?

$\textbf{(A) }20 \qquad\textbf{(B) }25 \qquad\textbf{(C) }45 \qquad\textbf{(D) }306 \qquad\textbf{(E) }351$


Solution

Problem 7

Each of the following four large congruent squares is subdivided into combinations of congruent triangles or rectangles and is partially bolded. What percent of the total area is partially bolded?

[asy] import graph; size(7.01cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-0.42,xmax=14.59,ymin=-10.08,ymax=5.26;  pair A=(0,0), B=(4,0), C=(0,4), D=(4,4), F=(2,0), G=(3,0), H=(1,4), I=(2,4), J=(3,4), K=(0,-2), L=(4,-2), M=(0,-6), O=(0,-4), P=(4,-4), Q=(2,-2), R=(2,-6), T=(6,4), U=(10,0), V=(10,4), Z=(10,2), A_1=(8,4), B_1=(8,0), C_1=(6,-2), D_1=(10,-2), E_1=(6,-6), F_1=(10,-6), G_1=(6,-4), H_1=(10,-4), I_1=(8,-2), J_1=(8,-6), K_1=(8,-4);  draw(C--H--(1,0)--A--cycle,linewidth(1.6)); draw(M--O--Q--R--cycle,linewidth(1.6)); draw(A_1--V--Z--cycle,linewidth(1.6)); draw(G_1--K_1--J_1--E_1--cycle,linewidth(1.6));  draw(C--D); draw(D--B); draw(B--A); draw(A--C); draw(H--(1,0)); draw(I--F); draw(J--G); draw(C--H,linewidth(1.6)); draw(H--(1,0),linewidth(1.6)); draw((1,0)--A,linewidth(1.6)); draw(A--C,linewidth(1.6)); draw(K--L); draw((4,-6)--L); draw((4,-6)--M); draw(M--K); draw(O--P); draw(Q--R); draw(O--Q); draw(M--O,linewidth(1.6)); draw(O--Q,linewidth(1.6)); draw(Q--R,linewidth(1.6)); draw(R--M,linewidth(1.6)); draw(T--V); draw(V--U); draw(U--(6,0)); draw((6,0)--T); draw((6,2)--Z); draw(A_1--B_1); draw(A_1--Z); draw(A_1--V,linewidth(1.6)); draw(V--Z,linewidth(1.6)); draw(Z--A_1,linewidth(1.6)); draw(C_1--D_1); draw(D_1--F_1); draw(F_1--E_1); draw(E_1--C_1); draw(G_1--H_1); draw(I_1--J_1); draw(G_1--K_1,linewidth(1.6)); draw(K_1--J_1,linewidth(1.6)); draw(J_1--E_1,linewidth(1.6)); draw(E_1--G_1,linewidth(1.6));  dot(A,linewidth(1pt)+ds); dot(B,linewidth(1pt)+ds); dot(C,linewidth(1pt)+ds); dot(D,linewidth(1pt)+ds); dot((1,0),linewidth(1pt)+ds); dot(F,linewidth(1pt)+ds); dot(G,linewidth(1pt)+ds); dot(H,linewidth(1pt)+ds); dot(I,linewidth(1pt)+ds); dot(J,linewidth(1pt)+ds); dot(K,linewidth(1pt)+ds); dot(L,linewidth(1pt)+ds); dot(M,linewidth(1pt)+ds); dot((4,-6),linewidth(1pt)+ds); dot(O,linewidth(1pt)+ds); dot(P,linewidth(1pt)+ds); dot(Q,linewidth(1pt)+ds); dot(R,linewidth(1pt)+ds); dot((6,0),linewidth(1pt)+ds); dot(T,linewidth(1pt)+ds); dot(U,linewidth(1pt)+ds); dot(V,linewidth(1pt)+ds); dot((6,2),linewidth(1pt)+ds); dot(Z,linewidth(1pt)+ds); dot(A_1,linewidth(1pt)+ds); dot(B_1,linewidth(1pt)+ds); dot(C_1,linewidth(1pt)+ds); dot(D_1,linewidth(1pt)+ds); dot(E_1,linewidth(1pt)+ds); dot(F_1,linewidth(1pt)+ds); dot(G_1,linewidth(1pt)+ds); dot(H_1,linewidth(1pt)+ds); dot(I_1,linewidth(1pt)+ds); dot(J_1,linewidth(1pt)+ds); dot(K_1,linewidth(1pt)+ds);  clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);[/asy]

$\textbf{(A)}12\frac{1}{2}\qquad\textbf{(B)}20\qquad\textbf{(C)}25\qquad\textbf{(D)}33\frac{1}{3}\qquad\textbf{(E)}37\frac{1}{2}$

Solution

Problem 8

Bag A has three chips labeled 1, 3, and 5. Bag B has three chips labeled 2, 4, and 6. If one chip is drawn from each bag, how many different values are possible for the sum of the two numbers on the chips?

$\textbf{(A) }4 \qquad\textbf{(B) }5 \qquad\textbf{(C) }6 \qquad\textbf{(D) }7 \qquad\textbf{(E) }9$


Solution

Problem 9

Carmen takes a long bike ride on a hilly highway. The graph indicates the miles traveled during the time of her ride. What is Carmen's average speed for her entire ride in miles per hour? [asy] import graph; size(8.76cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-3.58,xmax=10.19,ymin=-4.43,ymax=9.63;  draw((0,0)--(0,8)); draw((0,0)--(8,0)); draw((0,1)--(8,1)); draw((0,2)--(8,2)); draw((0,3)--(8,3)); draw((0,4)--(8,4)); draw((0,5)--(8,5)); draw((0,6)--(8,6)); draw((0,7)--(8,7)); draw((1,0)--(1,8)); draw((2,0)--(2,8)); draw((3,0)--(3,8)); draw((4,0)--(4,8)); draw((5,0)--(5,8)); draw((6,0)--(6,8)); draw((7,0)--(7,8)); label("$1$",(0.95,-0.24),SE*lsf); label("$2$",(1.92,-0.26),SE*lsf); label("$3$",(2.92,-0.31),SE*lsf); label("$4$",(3.93,-0.26),SE*lsf); label("$5$",(4.92,-0.27),SE*lsf); label("$6$",(5.95,-0.29),SE*lsf); label("$7$",(6.94,-0.27),SE*lsf); label("$5$",(-0.49,1.22),SE*lsf); label("$10$",(-0.59,2.23),SE*lsf); label("$15$",(-0.61,3.22),SE*lsf); label("$20$",(-0.61,4.23),SE*lsf); label("$25$",(-0.59,5.22),SE*lsf); label("$30$",(-0.59,6.2),SE*lsf); label("$35$",(-0.56,7.18),SE*lsf); draw((0,0)--(1,1),linewidth(1.6)); draw((1,1)--(2,3),linewidth(1.6)); draw((2,3)--(4,4),linewidth(1.6)); draw((4,4)--(7,7),linewidth(1.6)); label("HOURS",(3.41,-0.85),SE*lsf); label("M",(-1.39,5.32),SE*lsf); label("I",(-1.34,4.93),SE*lsf); label("L",(-1.36,4.51),SE*lsf); label("E",(-1.37,4.11),SE*lsf); label("S",(-1.39,3.7),SE*lsf);  clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);[/asy]

$\textbf{(A) }2\qquad\textbf{(B) } 2.5\qquad\textbf{(C) } 4\qquad\textbf{(D) } 4.5\qquad\textbf{(E) } 5$

Solution

Problem 10

The taxi fare in Gotham City is $2.40 for the first $\frac12$ mile and additional mileage charged at the rate $0.20 for each additional 0.1 mile. You plan to give the driver a $2 tip. How many miles can you ride for $10?

$\textbf{(A) } 3.0\qquad\textbf{(B) }3.25\qquad\textbf{(C) }3.3\qquad\textbf{(D) }3.5\qquad\textbf{(E) }3.75$


Solution

Problem 11

The graph shows the number of minutes studied by both Asha (black bar) and Sasha(grey bar) in one week. On the average, how many more minutes per day did Sasha study than Asha? [asy] size(300); real i; defaultpen(linewidth(0.8)); draw((0,140)--origin--(220,0)); for(i=1;i<13;i=i+1) { draw((0,10*i)--(220,10*i)); } label("$0$",origin,W); label("$20$",(0,20),W); label("$40$",(0,40),W); label("$60$",(0,60),W); label("$80$",(0,80),W); label("$100$",(0,100),W); label("$120$",(0,120),W); path MonD=(20,0)--(20,60)--(30,60)--(30,0)--cycle,MonL=(30,0)--(30,70)--(40,70)--(40,0)--cycle,TuesD=(60,0)--(60,90)--(70,90)--(70,0)--cycle,TuesL=(70,0)--(70,80)--(80,80)--(80,0)--cycle,WedD=(100,0)--(100,100)--(110,100)--(110,0)--cycle,WedL=(110,0)--(110,120)--(120,120)--(120,0)--cycle,ThurD=(140,0)--(140,80)--(150,80)--(150,0)--cycle,ThurL=(150,0)--(150,110)--(160,110)--(160,0)--cycle,FriD=(180,0)--(180,70)--(190,70)--(190,0)--cycle,FriL=(190,0)--(190,50)--(200,50)--(200,0)--cycle; fill(MonD,black); fill(MonL,grey); fill(TuesD,black); fill(TuesL,grey); fill(WedD,black); fill(WedL,grey); fill(ThurD,black); fill(ThurL,grey); fill(FriD,black); fill(FriL,grey); draw(MonD^^MonL^^TuesD^^TuesL^^WedD^^WedL^^ThurD^^ThurL^^FriD^^FriL); label("M",(30,-5),S); label("Tu",(70,-5),S); label("W",(110,-5),S); label("Th",(150,-5),S); label("F",(190,-5),S); label("M",(-25,85),W); label("I",(-27,75),W); label("N",(-25,65),W); label("U",(-25,55),W); label("T",(-25,45),W); label("E",(-25,35),W); label("S",(-26,25),W);[/asy]

$\textbf{(A)}\ 6\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 12$


Solution

Problem 12

Angie, Bridget, Carlos, and Diego are seated at random around a square table, one person to a side. What is the probability that Angie and Carlos are seated opposite each other?

$\textbf{(A) } \frac14 \qquad\textbf{(B) } \frac13 \qquad\textbf{(C) } \frac12 \qquad\textbf{(D) } \frac23 \qquad\textbf{(E) } \frac34$


Solution

Problem 13

Two congruent squares, $ABCD$ and $PQRS$, have side length $15$. They overlap to form the $15$ by $25$ rectangle $AQRD$ shown. What percent of the area of rectangle $AQRD$ is shaded? [asy] filldraw((0,0)--(25,0)--(25,15)--(0,15)--cycle,white,black); label("D",(0,0),S); label("R",(25,0),S); label("Q",(25,15),N); label("A",(0,15),N); filldraw((10,0)--(15,0)--(15,15)--(10,15)--cycle,mediumgrey,black); label("S",(10,0),S); label("C",(15,0),S); label("B",(15,15),N); label("P",(10,15),N);[/asy]

$\textbf{(A)}\ 15\qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 24\qquad\textbf{(E)}\ 25$

Solution

Problem 14

There are $270$ students at Colfax Middle School, where the ratio of boys to girls is $5 : 4$. There are $180$ students at Winthrop Middle School, where the ratio of boys to girls is $4 : 5$. The two schools hold a dance and all students from both schools attend. What fraction of the students at the dance are girls?

$\textbf{(A) } \dfrac7{18} \qquad\textbf{(B) } \dfrac7{15} \qquad\textbf{(C) } \dfrac{22}{45} \qquad\textbf{(D) } \dfrac12 \qquad\textbf{(E) } \dfrac{23}{45}$


Solution

Problem 15

How many digits are in the product $4^5 \cdot 5^{10}$?

$\textbf{(A) } 8 \qquad\textbf{(B) } 9 \qquad\textbf{(C) } 10 \qquad\textbf{(D) } 11 \qquad\textbf{(E) } 12$


Solution

Problem 16

Let $A$ be the area of the triangle with sides of length $25, 25$, and $30$. Let $B$ be the area of the triangle with sides of length $25, 25,$ and $40$. What is the relationship between $A$ and $B$?

$\textbf{(A) } A = \dfrac9{16}B \qquad\textbf{(B) } A = \dfrac34B \qquad\textbf{(C) } A=B \qquad\textbf{(D) } A = \dfrac43B \\ \\ \textbf{(E) }A = \dfrac{16}9B$


Solution

Problem 17

Let $w$, $x$, $y$, and $z$ be whole numbers. If $2^w \cdot 3^x \cdot 5^y \cdot 7^z = 588$, then what does $2w + 3x + 5y + 7z$ equal?

$\textbf{(A) } 21\qquad\textbf{(B) }25\qquad\textbf{(C) }27\qquad\textbf{(D) }35\qquad\textbf{(E) }56$


Solution

Problem 18

A fair 6-sided die is rolled twice. What is the probability that the first number that comes up is greater than or equal to the second number?

$\textbf{(A) }\dfrac16\qquad\textbf{(B) }\dfrac5{12}\qquad\textbf{(C) }\dfrac12\qquad\textbf{(D) }\dfrac7{12}\qquad\textbf{(E) }\dfrac56$


Solution

Problem 19

How many rectangles are in this figure?

[asy] pair A,B,C,D,E,F,G,H,I,J,K,L; A=(0,0); B=(20,0); C=(20,20); D=(0,20); draw(A--B--C--D--cycle); E=(-10,-5); F=(13,-5); G=(13,5); H=(-10,5); draw(E--F--G--H--cycle); I=(10,-20); J=(18,-20); K=(18,13); L=(10,13); draw(I--J--K--L--cycle);[/asy]

$\textbf{(A)}\ 8\qquad\textbf{(B)}\ 9\qquad\textbf{(C)}\ 10\qquad\textbf{(D)}\ 11\qquad\textbf{(E)}\ 12$


Solution

Problem 20

Quadrilateral $ABCD$ is a trapezoid, $AD = 15$, $AB = 50$, $BC = 20$, and the altitude is $12$. What is the area of the trapezoid?

[asy] pair A,B,C,D; A=(3,20); B=(35,20); C=(47,0); D=(0,0); draw(A--B--C--D--cycle); dot((0,0)); dot((3,20)); dot((35,20)); dot((47,0)); label("A",A,N); label("B",B,N); label("C",C,S); label("D",D,S); draw((19,20)--(19,0)); dot((19,20)); dot((19,0)); draw((19,3)--(22,3)--(22,0)); label("12",(21,10),E); label("50",(19,22),N); label("15",(1,10),W); label("20",(41,12),E);[/asy]

$\textbf{(A) }600\qquad\textbf{(B) }650\qquad\textbf{(C) }700\qquad\textbf{(D) }750\qquad\textbf{(E) }800$


Solution

Problem 21

Students guess that Norb's age is $24, 28, 30, 32, 36, 38, 41, 44, 47$, and $49$. Norb says, "At least half of you guessed too low, two of you are off by one, and my age is a prime number." How old is Norb?

$\textbf{(A) }29\qquad\textbf{(B) }31\qquad\textbf{(C) }37\qquad\textbf{(D) }43\qquad\textbf{(E) }48$


Solution

Problem 22

What is the tens digit of $7^{2011}$?

$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }3\qquad\textbf{(D) }4\qquad\textbf{(E) }7$


Solution

Problem 23

How many 4-digit positive integers have four different digits, where the leading digit is not zero, the integer is a multiple of 5, and 5 is the largest digit?

$\textbf{(A) }24\qquad\textbf{(B) }48\qquad\textbf{(C) }60\qquad\textbf{(D) }84\qquad\textbf{(E) }108$


Solution

Problem 24

In how many ways can 10001 be written as the sum of two primes?

$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }4$


Solution

Problem 25

A circle with radius $1$ is inscribed in a square and circumscribed about another square as shown. Which fraction is closest to the ratio of the circle's shaded area to the area between the two squares?

[asy] filldraw((-1,-1)--(-1,1)--(1,1)--(1,-1)--cycle,gray,black); filldraw(Circle((0,0),1), mediumgray,black); filldraw((-1,0)--(0,1)--(1,0)--(0,-1)--cycle,white,black);[/asy]

$\textbf{(A)}\ \frac{1}2\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ \frac{3}2\qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ \frac{5}2$


Solution

See Also

2011 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
2010 AMC 8
Followed by
2012 AMC 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png