TRAIN FOR THE AMC 8 WITH AOPS
Top scorers around the country use AoPS. Join training courses for beginners and advanced students.
VIEW CATALOG

Difference between revisions of "2010 AMC 8"

m (Added == See also ==)
 
(6 intermediate revisions by 5 users not shown)
Line 1: Line 1:
==Problem 1==
+
'''2010 AMC 8''' problems and solutions. The first link contains the full set of test problems.  The rest contain each individual problem and its solution.
At Euclid High School, the mathematics teachers are Mrs. Germain, Mr. Newton, and Mrs. Young. There are <math>11</math> students in Mrs. Germain's class, 8 in Mr. Newton, and <math>9</math> in Mrs. Young's class are taking the AMC <math>8</math> this year. How many mathematics students at Euclid High School are taking the contest?
 
  
<math> \textbf{(A)}\ 26 \qquad\textbf{(B)}\ 27\qquad\textbf{(C)}\ 28\qquad\textbf{(D)}\ 29\qquad\textbf{(E)}\ 30 </math>
+
*[[2010 AMC 8 Problems]]
 +
*[[2010 AMC 8 Answer Key]]
 +
**[[2010 AMC 8 Problems/Problem 1|Problem 1]]
 +
**[[2010 AMC 8 Problems/Problem 2|Problem 2]]
 +
**[[2010 AMC 8 Problems/Problem 3|Problem 3]]
 +
**[[2010 AMC 8 Problems/Problem 4|Problem 4]]
 +
**[[2010 AMC 8 Problems/Problem 5|Problem 5]]
 +
**[[2010 AMC 8 Problems/Problem 6|Problem 6]]
 +
**[[2010 AMC 8 Problems/Problem 7|Problem 7]]
 +
**[[2010 AMC 8 Problems/Problem 8|Problem 8]]
 +
**[[2010 AMC 8 Problems/Problem 9|Problem 9]]
 +
**[[2010 AMC 8 Problems/Problem 10|Problem 10]]
 +
**[[2010 AMC 8 Problems/Problem 11|Problem 11]]
 +
**[[2010 AMC 8 Problems/Problem 12|Problem 12]]
 +
**[[2010 AMC 8 Problems/Problem 13|Problem 13]]
 +
**[[2010 AMC 8 Problems/Problem 14|Problem 14]]
 +
**[[2010 AMC 8 Problems/Problem 15|Problem 15]]
 +
**[[2010 AMC 8 Problems/Problem 16|Problem 16]]
 +
**[[2010 AMC 8 Problems/Problem 17|Problem 17]]
 +
**[[2010 AMC 8 Problems/Problem 18|Problem 18]]
 +
**[[2010 AMC 8 Problems/Problem 19|Problem 19]]
 +
**[[2010 AMC 8 Problems/Problem 20|Problem 20]]
 +
**[[2010 AMC 8 Problems/Problem 21|Problem 21]]
 +
**[[2010 AMC 8 Problems/Problem 22|Problem 22]]
 +
**[[2010 AMC 8 Problems/Problem 23|Problem 23]]
 +
**[[2010 AMC 8 Problems/Problem 24|Problem 24]]
 +
**[[2010 AMC 8 Problems/Problem 25|Problem 25]]
  
==Problem 2==
 
If <math>a @ b = \frac{a\times b}{a+b}</math>, for <math>a,b</math> positive integers, then what is <math>5 @10</math>?
 
  
<math>\textbf{(A)}\ \frac{3}{10} \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ \frac{10}{3} \qquad\textbf{(E)}\ 50</math>
+
== See also ==
 
+
{{Succession box|
==Problem 3==
+
|header=2010 AMC 8 ([[2010 AMC 8 Problems|Problems]])
The graph shows the price of five gallons of gasoline during the first ten months of the year. By what percent is the highest price more than the lowest price?
+
|before=[[2009 AMC 8]]
 
+
|title=[[AMC 8]]
<asy>
+
|after=[[2011 AMC 8]]}}
import graph; size(16.38cm); real lsf=2; pathpen=linewidth(0.7); pointpen=black; pen fp = fontsize(10); pointfontpen=fp; real xmin=-1.33,xmax=11.05,ymin=-9.01,ymax=-0.44;
+
* [[Mathematics competitions]]
pen ycycyc=rgb(0.55,0.55,0.55);
+
* [[Mathematics competition resources]]
pair A=(1,-6), B=(1,-2), D=(1,-5.8), E=(1,-5.6), F=(1,-5.4), G=(1,-5.2), H=(1,-5), J=(1,-4.8), K=(1,-4.6), L=(1,-4.4), M=(1,-4.2), N=(1,-4), P=(1,-3.8), Q=(1,-3.6), R=(1,-3.4), S=(1,-3.2), T=(1,-3), U=(1,-2.8), V=(1,-2.6), W=(1,-2.4), Z=(1,-2.2), E_1=(1.4,-2.6), F_1=(1.8,-2.6), O_1=(14,-6), P_1=(14,-5), Q_1=(14,-4), R_1=(14,-3), S_1=(14,-2), C_1=(1.4,-6), D_1=(1.8,-6), G_1=(2.4,-6), H_1=(2.8,-6), I_1=(3.4,-6), J_1=(3.8,-6), K_1=(4.4,-6), L_1=(4.8,-6), M_1=(5.4,-6), N_1=(5.8,-6), T_1=(6.4,-6), U_1=(6.8,-6), V_1=(7.4,-6), W_1=(7.8,-6), Z_1=(8.4,-6), A_2=(8.8,-6), B_2=(9.4,-6), C_2=(9.8,-6), D_2=(10.4,-6), E_2=(10.8,-6), L_2=(2.4,-3.2), M_2=(2.8,-3.2), N_2=(3.4,-4), O_2=(3.8,-4), P_2=(4.4,-3.6), Q_2=(4.8,-3.6), R_2=(5.4,-3.6), S_2=(5.8,-3.6), T_2=(6.4,-3.4), U_2=(6.8,-3.4), V_2=(7.4,-3.8), W_2=(7.8,-3.8), Z_2=(8.4,-2.8), A_3=(8.8,-2.8), B_3=(9.4,-3.2), C_3=(9.8,-3.2), D_3=(10.4,-3.8), E_3=(10.8,-3.8);
+
* [[Math books]]
filldraw(C_1--E_1--F_1--D_1--cycle,ycycyc); filldraw(G_1--L_2--M_2--H_1--cycle,ycycyc); filldraw(I_1--N_2--O_2--J_1--cycle,ycycyc); filldraw(K_1--P_2--Q_2--L_1--cycle,ycycyc); filldraw(M_1--R_2--S_2--N_1--cycle,ycycyc); filldraw(T_1--T_2--U_2--U_1--cycle,ycycyc); filldraw(V_1--V_2--W_2--W_1--cycle,ycycyc); filldraw(Z_1--Z_2--A_3--A_2--cycle,ycycyc); filldraw(B_2--B_3--C_3--C_2--cycle,ycycyc); filldraw(D_2--D_3--E_3--E_2--cycle,ycycyc); D(B--A,linewidth(0.4)); D(H--(8,-5),linewidth(0.4)); D(N--(8,-4),linewidth(0.4)); D(T--(8,-3),linewidth(0.4)); D(B--(8,-2),linewidth(0.4)); D(B--S_1); D(T--R_1); D(N--Q_1); D(H--P_1); D(A--O_1); D(C_1--E_1); D(E_1--F_1); D(F_1--D_1); D(D_1--C_1); D(G_1--L_2); D(L_2--M_2); D(M_2--H_1); D(H_1--G_1); D(I_1--N_2); D(N_2--O_2); D(O_2--J_1); D(J_1--I_1); D(K_1--P_2); D(P_2--Q_2); D(Q_2--L_1); D(L_1--K_1); D(M_1--R_2); D(R_2--S_2); D(S_2--N_1); D(N_1--M_1); D(T_1--T_2); D(T_2--U_2); D(U_2--U_1); D(U_1--T_1); D(V_1--V_2); D(V_2--W_2); D(W_2--W_1); D(W_1--V_1); D(Z_1--Z_2); D(Z_2--A_3); D(A_3--A_2); D(A_2--Z_1); D(B_2--B_3); D(B_3--C_3); D(C_3--C_2); D(C_2--B_2); D(D_2--D_3); D(D_3--E_3); D(E_3--E_2); D(E_2--D_2); label("0",(0.88,-5.91),SE*lsf,fp); label("\$ 5",(0.3,-4.84),SE*lsf,fp); label("\$ 10",(0.2,-3.84),SE*lsf,fp); label("\$ 15",(0.2,-2.85),SE*lsf,fp); label("\$ 20",(0.2,-1.85),SE*lsf,fp); label("$\mathrm{Price}$",(0.16,-3.45),SE*lsf,fp); label("$1$",(1.54,-5.97),SE*lsf,fp); label("$2$",(2.53,-5.95),SE*lsf,fp); label("$3$",(3.53,-5.94),SE*lsf,fp); label("$4$",(4.55,-5.94),SE*lsf,fp); label("$5$",(5.49,-5.95),SE*lsf,fp); label("$6$",(6.53,-5.95),SE*lsf,fp); label("$7$",(7.55,-5.95),SE*lsf,fp); label("$8$",(8.52,-5.95),SE*lsf,fp); label("$9$",(9.57,-5.97),SE*lsf,fp); label("$10$",(10.56,-5.94),SE*lsf,fp); label("Month",(7.14,-6.43),SE*lsf,fp);
 
D(A,linewidth(1pt)); D(B,linewidth(1pt)); D(D,linewidth(1pt)); D(E,linewidth(1pt)); D(F,linewidth(1pt)); D(G,linewidth(1pt)); D(H,linewidth(1pt)); D(J,linewidth(1pt)); D(K,linewidth(1pt)); D(L,linewidth(1pt)); D(M,linewidth(1pt)); D(N,linewidth(1pt)); D(P,linewidth(1pt)); D(Q,linewidth(1pt)); D(R,linewidth(1pt)); D(S,linewidth(1pt)); D(T,linewidth(1pt)); D(U,linewidth(1pt)); D(V,linewidth(1pt)); D(W,linewidth(1pt)); D(Z,linewidth(1pt)); D(E_1,linewidth(1pt)); D(F_1,linewidth(1pt)); D(O_1,linewidth(1pt)); D(P_1,linewidth(1pt)); D(Q_1,linewidth(1pt)); D(R_1,linewidth(1pt)); D(S_1,linewidth(1pt)); D(C_1,linewidth(1pt)); D(D_1,linewidth(1pt)); D(G_1,linewidth(1pt)); D(H_1,linewidth(1pt)); D(I_1,linewidth(1pt)); D(J_1,linewidth(1pt)); D(K_1,linewidth(1pt)); D(L_1,linewidth(1pt)); D(M_1,linewidth(1pt)); D(N_1,linewidth(1pt)); D(T_1,linewidth(1pt)); D(U_1,linewidth(1pt)); D(V_1,linewidth(1pt)); D(W_1,linewidth(1pt)); D(Z_1,linewidth(1pt)); D(A_2,linewidth(1pt)); D(B_2,linewidth(1pt)); D(C_2,linewidth(1pt)); D(D_2,linewidth(1pt)); D(E_2,linewidth(1pt)); D(L_2,linewidth(1pt)); D(M_2,linewidth(1pt)); D(N_2,linewidth(1pt)); D(O_2,linewidth(1pt)); D(P_2,linewidth(1pt)); D(Q_2,linewidth(1pt)); D(R_2,linewidth(1pt)); D(S_2,linewidth(1pt)); D(T_2,linewidth(1pt)); D(U_2,linewidth(1pt)); D(V_2,linewidth(1pt)); D(W_2,linewidth(1pt)); D(Z_2,linewidth(1pt)); D(A_3,linewidth(1pt)); D(B_3,linewidth(1pt)); D(C_3,linewidth(1pt)); D(D_3,linewidth(1pt)); D(E_3,linewidth(1pt));
 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);</asy>
 
 
 
<math>\textbf{(A)}\ 50 \qquad
 
\textbf{(B)}\ 62 \qquad
 
\textbf{(C)}\ 70 \qquad
 
\textbf{(D)}\ 89 \qquad
 
\textbf{(E)}\ 100</math>
 
 
 
==Problem 4==
 
What is the sum of the mean, medium, and mode of the numbers, <math>2,3,0,3,1,4,0,3</math>?
 
 
 
<math> \textbf{(A)}\ 6.5 \qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 7.5\qquad\textbf{(D)}\ 8.5\qquad\textbf{(E)}\ 9 </math>
 
 
 
==Problem 5==
 
Alice needs to replace a light bulb located <math>10</math> centimeters below the ceiling of her kitchen. The ceiling is <math>2.4</math> meters above the floor. Alice is <math>1.5</math> meters tall and can reach <math>46</math> centimeters above her head. Standing on a stool, she can just reach the light bulb. What is the height of the stool, in centimeters?
 
 
 
<math> \textbf{(A)}\ 32 \qquad\textbf{(B)}\ 34\qquad\textbf{(C)}\ 36\qquad\textbf{(D)}\ 38\qquad\textbf{(E)}\ 40 </math>
 
 
 
==Problem 6==
 
Which of the following has the greatest number of line of symmetry?
 
 
 
<math> \textbf{(A)}\ \text{ Equilateral Triangle}</math>
 
<math>\textbf{(B)}\ \text{Non-square rhombus} </math>
 
<math>\textbf{(C)}\ \text{Non-square rectangle}</math>
 
<math>\textbf{(D)}\ \text{Isosceles Triangle}</math>
 
<math>\textbf{(E)}\ \text{Square} </math>
 
 
 
==Problem 7==
 
Using only pennies, nickels, dimes, and quarters, what is the smallest number of coins Freddie would need so he could pay any amount of money less than one dollar?
 
 
 
<math> \textbf{(A)}\ 6 \qquad\textbf{(B)}\ 10\qquad\textbf{(C)}\ 15\qquad\textbf{(D)}\ 25\qquad\textbf{(E)}\ 99 </math>
 
 
 
==Problem 8==
 
As Emily is riding her bike on a long straight road, she spots Emerson skating in the same direction <math>1/2</math> mile in front of her. After she passes him, she can see him in her rear mirror until he is <math>1/2</math> mile behind her. Emily rides at a constant rate of <math>12</math> miles per hour. Emerson skates at a constant rate of <math>8</math> miles per hour. For how many minutes can Emily see Emerson?
 
 
 
<math> \textbf{(A)}\ 6 \qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 12\qquad\textbf{(D)}\ 15\qquad\textbf{(E)}\ 16 </math>
 
 
 
==Problem 9==
 
Ryan got <math>80\%</math> of the problems on a <math>25</math>-problem test, <math>90\%</math> on a <math>40</math>-problem test, and <math>70\%</math> on a <math>10</math>-problem test. What percent of all problems did Ryan answer correctly?
 
 
 
<math> \textbf{(A)}\ 64 \qquad\textbf{(B)}\ 75\qquad\textbf{(C)}\ 80\qquad\textbf{(D)}\ 84\qquad\textbf{(E)}\ 86 </math>
 
 
 
==Problem 10==
 
<math>6</math> pepperoni circles will exactly fit across the diameter of a <math>12</math>-inch pizza when placed. If a total of <math>24</math> circles of pepperoni are placed on this pizza without overlap, what fraction of the pizza is covered with pepperoni?
 
 
 
<math> \textbf{(A)}\ \frac 12 \qquad\textbf{(B)}\ \frac 23 \qquad\textbf{(C)}\ \frac 34 \qquad\textbf{(D)}\ \frac 56 \qquad\textbf{(E)}\ \frac 78 </math>
 
 
 
==Problem 11==
 
The top of one tree is <math>16</math> feet higher than the top of another tree. The height of the <math>2</math> trees are at a ratio of <math>3:4</math>. In feet, how tall is the taller tree?
 
 
 
<math> \textbf{(A)}\ 48 \qquad\textbf{(B)}\ 64 \qquad\textbf{(C)}\ 80 \qquad\textbf{(D)}\ 96\qquad\textbf{(E)}\ 112 </math>
 
 
 
==Problem 12==
 
Of the <math>500</math> balls in a large bag, <math>80\%</math> are red and the rest are blue. How many of the red balls must be removed so that <math>75\%</math> of the remaining balls are red?
 
 
 
<math> \textbf{(A)}\ 25 \qquad\textbf{(B)}\ 50\qquad\textbf{(C)}\ 75\qquad\textbf{(D)}\ 100\qquad\textbf{(E)}\ 150 </math>
 
 
 
==Problem 13==
 
The lengths of the sides of a triangle in inches are three consecutive integers. The length of the shorter side is <math>30\%</math> of the perimeter. What is the length of the longest side?
 
 
 
<math> \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 11 </math>
 
 
 
==Problem 14==
 
What is the sum of the prime factors of <math>2010</math>?
 
 
 
<math> \textbf{(A)}\ 67 \qquad\textbf{(B)}\ 75\qquad\textbf{(C)}\ 77\qquad\textbf{(D)}\ 201\qquad\textbf{(E)}\ 210 </math>
 
 
 
==Problem 15==
 
A jar contains <math>5</math> different colors of gumdrops. <math>30\%</math> are blue, <math>20\%</math> are brown, <math>15\%</math> red, <math>10\%</math> yellow, and the other <math>30</math> gumdrops are green. If half of the blue gumdrops are replaced with brown gumdrops, how many gumdrops will be brown?
 
 
 
<math> \textbf{(A)}\ 35 \qquad\textbf{(B)}\ 36\qquad\textbf{(C)}\ 42\qquad\textbf{(D)}\ 48\qquad\textbf{(E)}\ 64 </math>
 
 
 
==Problem 16==
 
A square and a circle have the same area. What is the ratio of the side length of the square to the radius of the circle?
 
 
 
<math> \textbf{(A)}\  \frac{\sqrt{\pi}}{2}  \qquad\textbf{(B)}\ \sqrt{\pi} \qquad\textbf{(C)}\ \pi \qquad\textbf{(D)}\ 2\pi \qquad\textbf{(E)}\ \pi^{2}</math>
 
 
 
==Problem 17==
 
The diagram shows an octagon consisting of <math>10</math> unit squares. The portion below <math>\overline{PQ}</math> is a unit square and a triangle with base <math>5</math>. If <math>\overline{PQ}</math> bisects the area of the octagon, what is the ratio <math>\frac{XQ}{QY}</math>?
 
 
 
<asy>
 
import graph; size(300); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen xdxdff = rgb(0.49,0.49,1);
 
draw((0,0)--(6,0),linewidth(1.2pt)); draw((0,0)--(0,1),linewidth(1.2pt)); draw((0,1)--(1,1),linewidth(1.2pt)); draw((1,1)--(1,2),linewidth(1.2pt)); draw((1,2)--(5,2),linewidth(1.2pt)); draw((5,2)--(5,1),linewidth(1.2pt)); draw((5,1)--(6,1),linewidth(1.2pt)); draw((6,1)--(6,0),linewidth(1.2pt)); draw((1,1)--(5,1),linewidth(1.2pt)+linetype("2pt 2pt")); draw((1,1)--(1,0),linewidth(1.2pt)+linetype("2pt 2pt")); draw((2,2)--(2,0),linewidth(1.2pt)+linetype("2pt 2pt")); draw((3,2)--(3,0),linewidth(1.2pt)+linetype("2pt 2pt")); draw((4,2)--(4,0),linewidth(1.2pt)+linetype("2pt 2pt")); draw((5,1)--(5,0),linewidth(1.2pt)+linetype("2pt 2pt")); draw((0,0)--(5,1.5),linewidth(1.2pt));
 
dot((0,0),ds); label("$P$", (-0.23,-0.26),NE*lsf); dot((0,1),ds); dot((1,1),ds); dot((1,2),ds); dot((5,2),ds); label("$X$", (5.14,2.02),NE*lsf); dot((5,1),ds); label("$Y$", (5.12,1.14),NE*lsf); dot((6,1),ds); dot((6,0),ds); dot((1,0),ds); dot((2,0),ds); dot((3,0),ds); dot((4,0),ds); dot((5,0),ds); dot((2,2),ds); dot((3,2),ds); dot((4,2),ds); dot((5,1.5),ds); label("$Q$", (5.14,1.51),NE*lsf); clip((-4.19,-5.52)--(-4.19,6.5)--(10.08,6.5)--(10.08,-5.52)--cycle);
 
</asy>
 
 
 
<math>\textbf{(A)}\ \frac 25 \qquad
 
\textbf{(B)}\ \frac 12 \qquad
 
\textbf{(C)}\ \frac 35 \qquad
 
\textbf{(D)}\ \frac 23 \qquad
 
\textbf{(E)}\ \frac 34</math>
 
 
 
==Problem 18==
 
A decorative window is made up of a rectangle with semicircles at either end. The ratio of <math>AD</math> to <math>AB</math> is <math>3:2</math>. And <math>AB</math> is 30 inches. What is the ratio of the area of the rectangle to the combined area of the semicircle.
 
 
 
<asy>
 
import graph; size(5cm); real lsf=0; pen dps=linewidth(0.7)+fontsize(8); defaultpen(dps); pen ds=black; real xmin=-4.27,xmax=14.73,ymin=-3.22,ymax=6.8; draw((0,4)--(0,0)); draw((0,0)--(2.5,0)); draw((2.5,0)--(2.5,4)); draw((2.5,4)--(0,4)); draw(shift((1.25,4))*xscale(1.25)*yscale(1.25)*arc((0,0),1,0,180)); draw(shift((1.25,0))*xscale(1.25)*yscale(1.25)*arc((0,0),1,-180,0));
 
dot((0,0),ds); label("$A$",(-0.26,-0.23),NE*lsf); dot((2.5,0),ds); label("$B$",(2.61,-0.26),NE*lsf); dot((0,4),ds); label("$D$",(-0.26,4.02),NE*lsf); dot((2.5,4),ds); label("$C$",(2.64,3.98),NE*lsf);
 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);</asy>
 
 
 
<math> \textbf{(A)}\ 2:3 \qquad\textbf{(B)}\ 3:2\qquad\textbf{(C)}\ 6:\pi \qquad\textbf{(D)}\ 9: \pi \qquad\textbf{(E)}\ 30 : \pi</math>
 
 
 
==Problem 19==
 
The two circles pictured have the same center <math>C</math>. Chord <math>\overline{AD}</math> is tangent to the inner circle at <math>B</math>, <math>AC</math> is <math>10</math>, and chord <math>\overline{AD}</math> has length <math>16</math>. What is the area between the two circles?
 
 
 
<asy>
 
unitsize(45);
 
import graph; size(300); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen xdxdff = rgb(0.49,0.49,1);
 
draw((2,0.15)--(1.85,0.15)--(1.85,0)--(2,0)--cycle); draw(circle((2,1),2.24)); draw(circle((2,1),1)); draw((0,0)--(4,0)); draw((0,0)--(2,1)); draw((2,1)--(2,0)); draw((2,1)--(4,0));
 
dot((0,0),ds); label("$A$", (-0.19,-0.23),NE*lsf); dot((2,0),ds); label("$B$", (1.97,-0.31),NE*lsf); dot((2,1),ds); label("$C$", (1.96,1.09),NE*lsf); dot((4,0),ds); label("$D$", (4.07,-0.24),NE*lsf); clip((-3.1,-7.72)--(-3.1,4.77)--(11.74,4.77)--(11.74,-7.72)--cycle);
 
</asy>
 
 
 
<math> \textbf{(A)}\ 36 \pi \qquad\textbf{(B)}\ 49 \pi\qquad\textbf{(C)}\ 64 \pi\qquad\textbf{(D)}\ 81 \pi\qquad\textbf{(E)}\ 100 \pi </math>
 
 
 
==Problem 20==
 
In a room, <math>2/5</math> of the people are wearing gloves, and <math>3/4</math> of the people are wearing hats. What is the minimum number of people in the room wearing both a hat and a glove?
 
 
 
<math> \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 15\qquad\textbf{(E)}\ 20 </math>
 
 
 
==Problem 21==
 
Hui is an avid reader. She bought a copy of the best seller [i]Art of Problem Solving Hand Book[/i]. On the first day, she read <math>1/5</math> of the pages plus <math>12</math> more, and on the second day she read <math>1/4</math> of the remaining pages plus <math>15</math> more. On the third day she read <math>1/3</math> of the remaining pages plus <math>18</math> more. She then realizes she has <math>62</math> pages left, which she finishes the next day. How many pages are in this book?
 
 
 
<math> \textbf{(A)}\ 120 \qquad\textbf{(B)}\ 180\qquad\textbf{(C)}\ 240\qquad\textbf{(D)}\ 300\qquad\textbf{(E)}\ 360 </math>
 
 
 
==Problem 22==
 
The hundreds digit of a three-digit number is <math>2</math> more than the units digit. The digits of the three-digit number are reversed, and the result is subtracted from the original three-digit number. What is the units digit of the result?
 
 
 
<math> \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 8 </math>
 
 
 
==Problem 23==
 
Semicircles <math>POQ</math> and <math>ROS</math> pass through the center of circle <math>O</math>. What is the ratio of the combined areas of the two semicircles to the area of circle <math>O</math>?
 
<asy>
 
import graph; size(7.5cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-6.27,xmax=10.01,ymin=-5.65,ymax=10.98; draw(circle((0,0),2)); draw((-3,0)--(3,0),EndArrow(6)); draw((0,-3)--(0,3),EndArrow(6)); draw(shift((0.01,1.42))*xscale(1.41)*yscale(1.41)*arc((0,0),1,179.76,359.76)); draw(shift((-0.01,-1.42))*xscale(1.41)*yscale(1.41)*arc((0,0),1,-0.38,179.62)); draw((-1.4,1.43)--(1.41,1.41)); draw((-1.42,-1.41)--(1.4,-1.42)); label("$ P(-1,1) $",(-2.57,2.17),SE*lsf); label("$ Q(1,1) $",(1.55,2.21),SE*lsf); label("$ R(-1,1) $",(-2.72,-1.45),SE*lsf); label("$S(1,-1)$",(1.59,-1.49),SE*lsf);
 
dot((0,0),ds); label("$O$",(-0.24,-0.35),NE*lsf); dot((1.41,1.41),ds); dot((-1.4,1.43),ds); dot((1.4,-1.42),ds); dot((-1.42,-1.41),ds);
 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
 
</asy>
 
 
 
<math> \textbf{(A)}\ \frac{\sqrt 2}4 \qquad\textbf{(B)}\ \frac 12 \qquad\textbf{(C)}\ \frac{2}{\pi} \qquad\textbf{(D)}\ \frac{2}{3}\qquad\textbf{(E)}\ \frac{\sqrt 2}{2} </math>
 
 
 
==Problem 24==
 
What is the correct ordering of the three numbers, <math>10^8</math>, <math>5^1^2</math>, and <math>2^2^4</math>?
 
 
 
<math> \textbf{(A)}\ 2^2^4<10^8<5^1^2 </math>
 
<math> \textbf{(B)}\ 2^2^4<5^1^2<10^8 </math>
 
<math> \textbf{(C)}\ 5^1^2<2^2^4<10^8 </math>
 
<math> \textbf{(D)}\ 10^8<5^1^2<2^2^4</math>
 
<math> \textbf{(E)}\ 10^8<2^2^4<5^1^2 </math>
 
 
 
==Problem 25==
 
Everyday at school, Jo climbs a flight of <math>6</math> stairs. Joe can take the stairs <math>1,2</math>, or <math>3</math> at a time. For example, Jo could climb <math>3</math>, then <math>1</math>, then <math>2</math>. In how many ways can Jo climb the stairs?
 
 
 
<math> \textbf{(A)}\ 13 \qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 22\qquad\textbf{(E)}\ 24 </math>
 

Latest revision as of 17:46, 21 November 2018