Difference between revisions of "1995 AJHSME Problems/Problem 15"

(Created page with "==Problem== What is the <math>100^\text{th}</math> digit to the right of the decimal point in the decimal form of <math>4/37</math>? <math>\text{(A)}\ 0 \qquad \text{(B)}\ 1 \q...")
 
 
(3 intermediate revisions by 2 users not shown)
Line 4: Line 4:
  
 
<math>\text{(A)}\ 0 \qquad \text{(B)}\ 1 \qquad \text{(C)}\ 2 \qquad \text{(D)}\ 7 \qquad \text{(E)}\ 8</math>
 
<math>\text{(A)}\ 0 \qquad \text{(B)}\ 1 \qquad \text{(C)}\ 2 \qquad \text{(D)}\ 7 \qquad \text{(E)}\ 8</math>
 +
 +
==Solution==
 +
 +
<math>\frac{4}{37}=\frac{12}{111}=\frac{108}{999}=0.108108108...</math>
 +
 +
Since this repeats every three digits, digit number x = digit number (x mod 3), and the 100th digit = (100 mod 3)th digit = 1st digit = <math>\boxed{\text{(B)}\ 1}</math>
 +
 +
 +
==See Also==
 +
{{AJHSME box|year=1995|num-b=14|num-a=16}}
 +
{{MAA Notice}}

Latest revision as of 23:23, 4 July 2013

Problem

What is the $100^\text{th}$ digit to the right of the decimal point in the decimal form of $4/37$?

$\text{(A)}\ 0 \qquad \text{(B)}\ 1 \qquad \text{(C)}\ 2 \qquad \text{(D)}\ 7 \qquad \text{(E)}\ 8$

Solution

$\frac{4}{37}=\frac{12}{111}=\frac{108}{999}=0.108108108...$

Since this repeats every three digits, digit number x = digit number (x mod 3), and the 100th digit = (100 mod 3)th digit = 1st digit = $\boxed{\text{(B)}\ 1}$


See Also

1995 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png