Difference between revisions of "1994 AJHSME Problems/Problem 13"

(Created page with "==Problem== The number halfway between <math>\dfrac{1}{6}</math> and <math>\dfrac{1}{4}</math> is <math>\text{(A)}\ \dfrac{1}{10} \qquad \text{(B)}\ \dfrac{1}{5} \qquad \text{(...")
 
(Uh Oh Unluky 13!)
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 +
 +
  
 
The number halfway between <math>\dfrac{1}{6}</math> and <math>\dfrac{1}{4}</math> is
 
The number halfway between <math>\dfrac{1}{6}</math> and <math>\dfrac{1}{4}</math> is
  
 
<math>\text{(A)}\ \dfrac{1}{10} \qquad \text{(B)}\ \dfrac{1}{5} \qquad \text{(C)}\ \dfrac{5}{24} \qquad \text{(D)}\ \dfrac{7}{24} \qquad \text{(E)}\ \dfrac{5}{12}</math>
 
<math>\text{(A)}\ \dfrac{1}{10} \qquad \text{(B)}\ \dfrac{1}{5} \qquad \text{(C)}\ \dfrac{5}{24} \qquad \text{(D)}\ \dfrac{7}{24} \qquad \text{(E)}\ \dfrac{5}{12}</math>
 +
 +
==Solution==
 +
The number halfway between is the average.
 +
 +
<cmath>\frac{\frac16 + \frac14}{2} = \frac{\frac{2}{12} + \frac{3}{12}}{2} = \boxed{\text{(C)}\ \frac{5}{24}}</cmath>
 +
 +
==See Also==
 +
{{AJHSME box|year=1994|num-b=12|num-a=14}}
 +
{{MAA Notice}}

Latest revision as of 12:24, 30 October 2016

Problem

The number halfway between $\dfrac{1}{6}$ and $\dfrac{1}{4}$ is

$\text{(A)}\ \dfrac{1}{10} \qquad \text{(B)}\ \dfrac{1}{5} \qquad \text{(C)}\ \dfrac{5}{24} \qquad \text{(D)}\ \dfrac{7}{24} \qquad \text{(E)}\ \dfrac{5}{12}$

Solution

The number halfway between is the average.

\[\frac{\frac16 + \frac14}{2} = \frac{\frac{2}{12} + \frac{3}{12}}{2} = \boxed{\text{(C)}\ \frac{5}{24}}\]

See Also

1994 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png