Difference between revisions of "1998 AHSME Problems/Problem 18"

(Problem)
 
Line 22: Line 22:
 
== See also ==
 
== See also ==
 
{{AHSME box|year=1998|num-b=17|num-a=19}}
 
{{AHSME box|year=1998|num-b=17|num-a=19}}
 +
{{MAA Notice}}

Latest revision as of 13:29, 5 July 2013

Problem

A right circular cone of volume $A$, a right circular cylinder of volume $M$, and a sphere of volume $C$ all have the same radius, and the common height of the cone and the cylinder is equal to the diameter of the sphere. Then

$\mathrm{(A) \ } A-M+C = 0 \qquad \mathrm{(B) \ } A+M=C \qquad \mathrm{(C) \ } 2A = M+C$

$\qquad \mathrm{(D) \ }A^2 - M^2 + C^2 = 0 \qquad \mathrm{(E) \ } 2A + 2M = 3C$

Solution

Using the radius $r$ the three volumes can be computed as follows:

$A = \frac 13 (\pi r^2) \cdot 2r$

$M = (\pi r^2) \cdot 2r$

$C = \frac 43 \pi r^3$

Clearly, $M = A+C \Longrightarrow$ the correct answer is $\mathrm{(A)}$.

The other linear combinations are obviously non-zero, and the left hand side of $\mathrm{(D)}$ evaluates to $(\pi r^3)^2 \cdot \left( \frac 49 - 4 + \frac {16}9 \right)$ which is negative. Thus $\mathrm{(A)}$ is indeed the only correct answer.

See also

1998 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png