Difference between revisions of "1991 APMO Problems/Problem 3"
(→Solution) |
(→Solution) |
||
Line 4: | Line 4: | ||
== Solution == | == Solution == | ||
− | By Cauchy-Schwarz, <math>\left(\sum \dfrac{a_i^2}{a_i+b_i}\right)\left(\sum a_i+b_i\right)\geq \left(\sum a_i\right) ^2</math>, | + | By Cauchy-Schwarz, <math>\left(\sum \dfrac{a_i^2}{a_i+b_i}\right)\left(\sum a_i+b_i\right)\geq \left(\sum a_i\right) ^2</math>. Since <math>\sum a_i=\sum b_i</math>, we get<math>\sum \dfrac{a_i^2}{a_i+b_i}\geq \dfrac{\left(\sum a_i\right) ^2}{\sum (a_i+b_i)}=\dfrac{\sum a_i}{2}</math>. |
Latest revision as of 16:41, 4 August 2011
Problem
Let , , , , , , , be positive real numbers such that . Show that
Solution
By Cauchy-Schwarz, . Since , we get.