Difference between revisions of "1998 AHSME Problems/Problem 7"
(Created page with "== Problem 7 == If <math>N > 1</math>, then <math>\sqrt[3]{N\sqrt[3]{N\sqrt[3]{N}}} =</math> <math> \mathrm{(A) \ } N^{\frac 1{27}} \qquad \mathrm{(B) \ } N^{\frac 1{9}} \qquad ...") |
|||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | == Problem | + | == Problem == |
If <math>N > 1</math>, then <math>\sqrt[3]{N\sqrt[3]{N\sqrt[3]{N}}} =</math> | If <math>N > 1</math>, then <math>\sqrt[3]{N\sqrt[3]{N\sqrt[3]{N}}} =</math> | ||
<math> \mathrm{(A) \ } N^{\frac 1{27}} \qquad \mathrm{(B) \ } N^{\frac 1{9}} \qquad \mathrm{(C) \ } N^{\frac 1{3}} \qquad \mathrm{(D) \ } N^{\frac {13}{27}} \qquad \mathrm{(E) \ } N</math> | <math> \mathrm{(A) \ } N^{\frac 1{27}} \qquad \mathrm{(B) \ } N^{\frac 1{9}} \qquad \mathrm{(C) \ } N^{\frac 1{3}} \qquad \mathrm{(D) \ } N^{\frac {13}{27}} \qquad \mathrm{(E) \ } N</math> | ||
− | [[ | + | ==Solution== |
+ | The key identities are <math>\sqrt[3]{x^n} = x^{\frac{n}{3}}</math> and <math>x \cdot x^{\frac{a}{b}} = x^{1 + \frac{a}{b}}</math> | ||
+ | |||
+ | <math>\sqrt[3]{N\sqrt[3]{N\sqrt[3]{N}}}</math> | ||
+ | |||
+ | <math>\sqrt[3]{N\sqrt[3]{N\cdot N^{\frac{1}{3}}}}</math> | ||
+ | |||
+ | <math>\sqrt[3]{N\sqrt[3]{N^{\frac{4}{3}}}}</math> | ||
+ | |||
+ | <math>\sqrt[3]{N\cdot{N^{\frac{4}{9}}}}</math> | ||
+ | |||
+ | <math>\sqrt[3]{{N^{\frac{13}{9}}}}</math> | ||
+ | |||
+ | <math>N^{\frac{13}{27}}</math>, thus the answer is <math>\boxed{D}</math> | ||
+ | |||
+ | ==See Also== | ||
+ | {{AHSME box|year=1998|num-b=6|num-a=8}} | ||
+ | {{MAA Notice}} |
Latest revision as of 13:28, 5 July 2013
Problem
If , then
Solution
The key identities are and
, thus the answer is
See Also
1998 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.