Difference between revisions of "2007 AMC 10B Problems/Problem 15"

(Created page with "==Problem== The angles of quadrilateral <math>ABCD</math> satisfy <math>\angle A=2 \angle B=3 \angle C=4 \angle D.</math> What is the degree measure of <math>\angle A,</math> ro...")
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
{{duplicate|[[2007 AMC 12B Problems|2007 AMC 12B #11]] and [[2007 AMC 10B Problems|2007 AMC 10B #15]]}}
 +
 
==Problem==
 
==Problem==
  
Line 17: Line 19:
  
 
==See Also==
 
==See Also==
 +
 +
{{AMC12 box|year=2007|ab=B|num-b=10|num-a=12}}
  
 
{{AMC10 box|year=2007|ab=B|num-b=14|num-a=16}}
 
{{AMC10 box|year=2007|ab=B|num-b=14|num-a=16}}
 +
{{MAA Notice}}

Latest revision as of 11:22, 4 July 2013

The following problem is from both the 2007 AMC 12B #11 and 2007 AMC 10B #15, so both problems redirect to this page.

Problem

The angles of quadrilateral $ABCD$ satisfy $\angle A=2 \angle B=3 \angle C=4 \angle D.$ What is the degree measure of $\angle A,$ rounded to the nearest whole number?

$\textbf{(A) } 125 \qquad\textbf{(B) } 144 \qquad\textbf{(C) } 153 \qquad\textbf{(D) } 173 \qquad\textbf{(E) } 180$

Solution

The sum of the interior angles of any quadrilateral is $360^\circ.$ \begin{align*} 360 &= \angle A + \angle B + \angle C + \angle D\\ &= \angle A + \frac{1}{2}A + \frac{1}{3}A + \frac{1}{4}A\\ &= \frac{12}{12}A + \frac{6}{12}A + \frac{4}{12}A + \frac{3}{12}A\\ &= \frac{25}{12}A \end{align*} \[\angle A = 360 \cdot \frac{12}{25} = 172.8 \approx \boxed{\mathrm{(D) \ } 173}\]

See Also

2007 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2007 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png