|
|
(97 intermediate revisions by 65 users not shown) |
Line 1: |
Line 1: |
− | == Background ==
| + | #REDIRECT[[Vieta's formulas]] |
− | | |
− | Let <math>P(x)={a_n}x^n+{a_{n-1}}x^{n-1}+\cdots+{a_1}x+a_0</math>,
| |
− | where the coefficient of <math>x^{i}</math> is <math>{a}_i</math>. As a consequence of the [[Fundamental Theorem of Algebra]], we can also write <math>P(x)=a_n(x-r_1)(x-r_2)\cdots(x-r_n)</math>, where <math>{r}_i</math> are the roots of <math>P(x)</math>.
| |
− | | |
− | Also, let <math>{\sigma}_k</math> be the <math>{}{k}</math>th [[symmetric sum]].
| |
− | | |
− | == Statement ==
| |
− | | |
− | <math>\sigma_k = (-1)^k\cdot \frac{a_{n-k}}{a_n{}}</math>, for <math>{}1\le k\le {n}</math>.
| |
− | | |
− | == Proof ==
| |
− | | |
− | [needs to be added]
| |
− | | |
− | === See also ===
| |
− | | |
− | * [[Algebra]]
| |
− | * [[Polynomials]]
| |
− | * [[Newton's identities]]
| |
− | | |
− | === Related Links ===
| |
− | [http://mathworld.wolfram.com/VietasFormulas.html Mathworld's Article]
| |