Difference between revisions of "Dodecagon"

m
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
A '''dodecagon''' is a 12-sided [[polygon]]. The sum of its internal [[angle]]s is <math>1800^{\circ}</math>.
+
A '''dodecagon''' is a 12-sided [[polygon]]. The sum of its internal [[angle]]s is <math>1800^{\circ}</math>. Each of its exterior angles has measure  <math>30^{\circ}</math>.
 +
 
 +
A regular dodecagon can be seen below:
 +
 
 +
<asy>
 +
for(int i = 0; i <= 11; ++i) {
 +
draw(dir(360/12*i)--dir(360/12*(i + 1)));
 +
}
 +
pair A,B,C,D,E,F,G,H,I,J,K,L;
 +
A=dir(360/12*0);
 +
B=dir(360/12*1);
 +
C=dir(360/12*2);
 +
D=dir(360/12*3);
 +
E=dir(360/12*4);
 +
F=dir(360/12*5);
 +
G=dir(360/12*6);
 +
H=dir(360/12*7);
 +
I=dir(360/12*8);
 +
J=dir(360/12*9);
 +
K=dir(360/12*10);
 +
L=dir(360/12*11);
 +
label("A",A,dir(0));
 +
label("B",B,dir(30));
 +
label("C",C,dir(60));
 +
label("D",D,dir(90));
 +
label("E",E,dir(120));
 +
label("F",F,dir(150));
 +
label("G",G,dir(180));
 +
label("H",H,dir(210));
 +
label("I",I,dir(240));
 +
label("J",J,dir(270));
 +
label("K",K,dir(300));
 +
label("L",L,dir(330));
 +
draw(dir(360/12*0)--dir(360/12*6));
 +
dot((dir(360/12*0)+dir(360/12*6))/2);
 +
pair O = (dir(360/12*0)+dir(360/12*6))/2;
 +
label("O",O,S);
 +
draw(A--O);
 +
draw(Circle(O,1));
 +
</asy>
 +
The area of a regular dodecagon can be calculated by the formula <math>3R^2</math>, where <math>R</math> is the circumradius of the dodecagon. In this case, <math>R</math> would be <math>OA</math>. Also, each small triangle (<math>AOB</math>, <math>BOC</math>, etc.) is congruent, so <math>\angle AOB=\angle BOC=\angle COD</math> (etc) <math>=30^{\circ}</math>.
  
 
==See Also==
 
==See Also==

Latest revision as of 12:08, 15 June 2018

A dodecagon is a 12-sided polygon. The sum of its internal angles is $1800^{\circ}$. Each of its exterior angles has measure $30^{\circ}$.

A regular dodecagon can be seen below:

[asy] for(int i = 0; i <= 11; ++i) { draw(dir(360/12*i)--dir(360/12*(i + 1))); } pair A,B,C,D,E,F,G,H,I,J,K,L; A=dir(360/12*0); B=dir(360/12*1); C=dir(360/12*2); D=dir(360/12*3); E=dir(360/12*4); F=dir(360/12*5); G=dir(360/12*6); H=dir(360/12*7); I=dir(360/12*8); J=dir(360/12*9); K=dir(360/12*10); L=dir(360/12*11); label("A",A,dir(0)); label("B",B,dir(30)); label("C",C,dir(60)); label("D",D,dir(90)); label("E",E,dir(120)); label("F",F,dir(150)); label("G",G,dir(180)); label("H",H,dir(210)); label("I",I,dir(240)); label("J",J,dir(270)); label("K",K,dir(300)); label("L",L,dir(330)); draw(dir(360/12*0)--dir(360/12*6)); dot((dir(360/12*0)+dir(360/12*6))/2); pair O = (dir(360/12*0)+dir(360/12*6))/2; label("O",O,S); draw(A--O); draw(Circle(O,1)); [/asy] The area of a regular dodecagon can be calculated by the formula $3R^2$, where $R$ is the circumradius of the dodecagon. In this case, $R$ would be $OA$. Also, each small triangle ($AOB$, $BOC$, etc.) is congruent, so $\angle AOB=\angle BOC=\angle COD$ (etc) $=30^{\circ}$.

See Also

This article is a stub. Help us out by expanding it.