Difference between revisions of "2011 AIME II Problems/Problem 2"

(Remove extra problem section)
 
(6 intermediate revisions by 5 users not shown)
Line 1: Line 1:
Problem:
+
== Problem 2 ==
 +
On [[square]] <math>ABCD</math>, point <math>E</math> lies on side <math>AD</math> and point <math>F</math> lies on side <math>BC</math>, so that <math>BE=EF=FD=30</math>. Find the area of the square <math>ABCD</math>.
  
On square ABCD, point E lies on side AD and point F lies on side BC, so that BE=EF=FD=30. Find the area of the square ABCD.
+
== Solution ==
 +
Drawing the square and examining the given lengths,
 +
<asy>
 +
size(2inch, 2inch);
 +
currentpen = fontsize(8pt);
 +
pair A = (0, 0); dot(A); label("$A$", A, plain.SW);
 +
pair B = (3, 0); dot(B); label("$B$", B, plain.SE);
 +
pair C = (3, 3); dot(C); label("$C$", C, plain.NE);
 +
pair D = (0, 3); dot(D); label("$D$", D, plain.NW);
 +
pair E = (0, 1); dot(E); label("$E$", E, plain.W);
 +
pair F = (3, 2); dot(F); label("$F$", F, plain.E);
 +
label("$\frac x3$", E--A);
 +
label("$\frac x3$", F--C);
 +
label("$x$", A--B);
 +
label("$x$", C--D);
 +
label("$\frac {2x}3$", B--F);
 +
label("$\frac {2x}3$", D--E);
 +
label("$30$", B--E);
 +
label("$30$", F--E);
 +
label("$30$", F--D);
 +
draw(B--C--D--F--E--B--A--D);
 +
</asy>
 +
you find that the three segments cut the square into three equal horizontal sections. Therefore, (<math>x</math> being the side length), <math>\sqrt{x^2+(x/3)^2}=30</math>, or <math>x^2+(x/3)^2=900</math>. Solving for <math>x</math>, we get <math>x=9\sqrt{10}</math>, and <math>x^2=810.</math>
  
----
+
Area of the square is <math>\fbox{810}</math>.
Solution: (Needs better solution, I cannot remember exactly how I got the side length)
 
  
Drawing the square and examining the given lengths, you find that the three segments cut the square into three equal horizontal sections (I dont know how to make a diagram so somebody please insert one)
+
==See also==
Therefore, (x being the side length), <math>sqrt(x^2+(x/3)^2)=30</math>, or <math>x^2+(x/3)^2=900</math>. Solving for x, we get that x=9sqrt(10), and <math>x^2</math>=810
+
{{AIME box|year=2011|n=II|num-b=1|num-a=3}}
  
Area of the square is 810.
+
[[Category:Intermediate Geometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 16:02, 9 August 2018

Problem 2

On square $ABCD$, point $E$ lies on side $AD$ and point $F$ lies on side $BC$, so that $BE=EF=FD=30$. Find the area of the square $ABCD$.

Solution

Drawing the square and examining the given lengths, [asy] size(2inch, 2inch); currentpen = fontsize(8pt); pair A = (0, 0); dot(A); label("$A$", A, plain.SW); pair B = (3, 0); dot(B); label("$B$", B, plain.SE); pair C = (3, 3); dot(C); label("$C$", C, plain.NE); pair D = (0, 3); dot(D); label("$D$", D, plain.NW); pair E = (0, 1); dot(E); label("$E$", E, plain.W); pair F = (3, 2); dot(F); label("$F$", F, plain.E); label("$\frac x3$", E--A); label("$\frac x3$", F--C); label("$x$", A--B); label("$x$", C--D); label("$\frac {2x}3$", B--F); label("$\frac {2x}3$", D--E); label("$30$", B--E); label("$30$", F--E); label("$30$", F--D); draw(B--C--D--F--E--B--A--D); [/asy] you find that the three segments cut the square into three equal horizontal sections. Therefore, ($x$ being the side length), $\sqrt{x^2+(x/3)^2}=30$, or $x^2+(x/3)^2=900$. Solving for $x$, we get $x=9\sqrt{10}$, and $x^2=810.$

Area of the square is $\fbox{810}$.

See also

2011 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png