Difference between revisions of "Menelaus' Theorem"

(Statement)
(Redirected page to Menelaus' theorem)
(Tag: New redirect)
 
(39 intermediate revisions by 18 users not shown)
Line 1: Line 1:
{{stub}}
+
#REDIRECT[[Menelaus' theorem]]
 
 
'''Menelaus' Theorem''' deals with the [[collinearity]] of points on each of the three sides (extended when necessary) of a [[triangle]].
 
It is named for Menelaus of Alexandria.
 
== Statement ==
 
A necessary and sufficient condition for points <math>P, Q, R</math> on the respective sides <math>BC, CA, AB</math> (or their extensions) of a triangle <math>ABC</math> to be collinear is that
 
 
 
<center><math>BP\cdot CQ\cdot AR = -PC\cdot QA\cdot RB</math></center>
 
 
 
where all segments in the formula are [[directed segment]]s.
 
 
 
<center><asy>
 
defaultpen(fontsize(8));
 
pair A=(7,6), B=(0,0), C=(10,0), P=(4,0), Q=(6,8), R;
 
draw((0,0)--(10,0)--(7,6)--(0,0),blue+0.75);
 
draw((7,6)--(6,8)--(4,0));
 
R=intersectionpoint(A--B,Q--P);
 
dot(A^^B^^C^^P^^Q^^R);
 
label("A",A,(1,1));label("B",B,(-1,0));label("C",C,(1,0));label("P",P,(0,-1));label("Q",Q,(1,0));label("R",R,(-1,1));
 
</asy></center>
 
 
 
== Proof ==
 
Draw a line parallel to <math>QP</math> through <math>A</math> to intersect <math>BC</math> at <math>K</math>:
 
<center><asy>
 
defaultpen(fontsize(8));
 
pair A=(7,6), B=(0,0), C=(10,0), P=(4,0), Q=(6,8), R, K=(5.5,0);
 
draw((0,0)--(10,0)--(7,6)--(0,0),blue+0.75);
 
draw((7,6)--(6,8)--(4,0));
 
draw(A--K, dashed);
 
R=intersectionpoint(A--B,Q--P);
 
dot(A^^B^^C^^P^^Q^^R^^K);
 
label("A",A,(1,1));label("B",B,(-1,0));label("C",C,(1,0));label("P",P,(0,-1));label("Q",Q,(1,0));label("R",R,(-1,1));
 
label("K",K,(0,-1));
 
</asy></center>
 
<math>\triangle RBP \sim \triangle ABK \implies \frac{AR}{RB}=\frac{KP}{PB}</math>
 
 
 
<math>\triangle QCP \sim \triangle ACK \implies \frac{QC}{QA}=\frac{PC}{PK}</math>
 
 
 
Multiplying the two equalities together to eliminate the <math>PK</math> factor, we get:
 
 
 
<math>\frac{AR}{RB}\cdot\frac{QC}{QA}=\frac{PC}{PB}\implies \frac{AR}{RB}\cdot\frac{QC}{QA}\cdot\frac{PB}{PC}=1</math>
 
 
 
== See also ==
 
* [[Ceva's Theorem]]
 
* [[Stewart's Theorem]]
 
 
 
[[Category:Theorems]]
 
 
 
[[Category:Geometry]]
 

Latest revision as of 15:20, 9 May 2021

Redirect to: