Difference between revisions of "1992 USAMO Problems/Problem 5"
(Created page with '==Problem 5== Let <math>\, P(z) \,</math> be a polynomial with complex coefficients which is of degree <math>\, 1992 \,</math> and has distinct zeros. Prove that there exist com…') |
Mathgeek2006 (talk | contribs) m (→Solution) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 5: | Line 5: | ||
== Solution == | == Solution == | ||
− | Since the zeros <math>z_{1}, z_{2}, \ldots, z_{1992}</math> of the polynomial <math>P(z)</math> are distinct, the polynomial <math>P(z)</math> divides the polynomial < | + | Since the zeros <math>z_{1}, z_{2}, \ldots, z_{1992}</math> of the polynomial <math>P(z)</math> are distinct, the polynomial <math>P(z)</math> divides the polynomial |
+ | <cmath>Q\left(z\right) = \left( \ldots \left( \left(z-a_{1}\right)^{2}-a_{2}\right)^{2}\ldots-a_{1991}\right)^{2}-a_{1992}</cmath> | ||
+ | if and only if <math>Q\left(z_{i}\right)=0</math> for every <math>i\in\left\{1;\;2;\;\ldots;\;1992\right\}</math>. So it is enough to show that for any <math>1992</math> complex numbers <math>z_{1}, z_{2}, \dots, z_{1992}</math>, there exist <math>1992</math> complex numbers <math>a_{1}, a_{2}, \ldots, a_{1992}</math>, such that the polynomial | ||
+ | <cmath>Q\left(z\right) = \left(\ldots\left( \left(z-a_{1}\right)^{2}-a_{2}\right)^{2}\ldots-a_{1991}\right)^{2}-a_{1992}</cmath> | ||
+ | satisfies <math>Q\left(z_{i}\right)=0</math> for every <math>i\in\left\{1;\;2;\;\ldots;\;1992\right\}</math>. This is a special case of the following lemma. | ||
<br/> | <br/> | ||
− | <b>Lemma</b> | + | <b>Lemma:</b> Let <math>n</math> be a positive integer, and <math>z_{1}, z_{2}, \ldots, z_{n}</math> be <math>n</math> complex numbers. Then, there exist <math>n</math> complex numbers <math>a_{1}, a_{2},\ldots, a_{n}</math> such that the polynomial <math>Q\left(z\right) = \left( \ldots \left( \left(z-a_{1}\right)^{2}-a_{2}\right)^{2}\ldots-a_{n-1}\right)^{2}-a_{n}</math> satisfies <math>Q\left(z_{i}\right)=0</math> for every <math>i\in\left\{1;\;2;\;\ldots;\;n\right\}</math>. |
<br/> | <br/> | ||
− | Proof: We use induction over <math>n</math>. | + | <b>Proof:</b> We use induction over <math>n</math>. |
For <math>n = 1</math>, the lemma is trivial, since <math>Q\left(z\right)=z-a_{1}</math>, so we can take <math>a_{1}=z_{1}</math>, and then the polynomial <math>Q\left(z\right)=z-z_{1}</math> clearly satisfies <math>Q\left(z_{1}\right)=0</math>. | For <math>n = 1</math>, the lemma is trivial, since <math>Q\left(z\right)=z-a_{1}</math>, so we can take <math>a_{1}=z_{1}</math>, and then the polynomial <math>Q\left(z\right)=z-z_{1}</math> clearly satisfies <math>Q\left(z_{1}\right)=0</math>. | ||
<br/> | <br/> | ||
− | Let <math>k</math> be a positive integer. Assume that for <math>n = k</math>, the lemma is true. | + | Let <math>k</math> be a positive integer. Assume that for <math>n = k</math>, the lemma is true. Therefore, there exist <math>k</math> complex numbers <math>a_{1}, a_{2}, \ldots, a_{k}</math> such that the polynomial <math>Q\left(z\right)=\left(\ldots\left( \left(z-a_{1}\right)^{2}-a_{2}\right)^{2}\ldots-a_{k-1}\right)^{2}-a_{k}</math> satisfies <math>Q\left(z_{i}\right)=0</math> for every <math>i\in\left\{1;\;2;\;\ldots;\;k\right\}</math>. Then we wish to prove that for any <math>k + 1</math> complex numbers <math>z_{1}, z_{2}, \ldots, z_{k+1}</math>, there exist <math>k + 1</math> complex numbers <math>b_{1}, b_{2}, \ldots, b_{k+1}</math> such that the polynomial <math>R\left(z\right)=\left(\ldots\left( \left(z-b_{1}\right)^{2}-b_{2}\right)^{2}\ldots-b_{k}\right)^{2}-b_{k+1}</math> satisfies <math>R\left(z_{i}\right)=0</math> for every <math>i\in\left\{1;\;2;\;\ldots;\;k+1\right\}</math>. We will construct this polynomial <math>R</math> from the polynomial <math>Q</math>. |
− | + | Let <math>b_{i}=a_{i}</math> for every <math>i\le k-1</math>, and let <math>b_{k}=a_{k}+\frac{1}{2}Q\left(z_{k+1}\right)</math> and <math>b_{k+1}=\frac{1}{4}\left(Q\left(z_{k+1}\right)\right)^{2}</math>. Then, | |
− | |||
− | |||
<br/> | <br/> | ||
− | < | + | <cmath> |
+ | \begin{align*} | ||
+ | R\left(z\right)&=\left(\ldots\left(\left(\left(z-b_{1}\right)^{2}-b_{2}\right)^{2}\ldots-b_{k-1}\right)^{2}-b_{k}\right)^{2}-b_{k+1}\\ | ||
+ | & =\left(\ldots\left(\left(\left(z-a_{1}\right)^{2}-a_{2}\right)^{2}\ldots-a_{k-1}\right)^{2}-\left(a_{k}+\frac{1}2Q\left(z_{k+1}\right)\right)\right)^{2}-\frac{1}4\left(Q\left(z_{k+1}\right)\right)^{2} \\ | ||
+ | & =\left(\left(\ldots\left(\left(\left(z-a_{1}\right)^{2}-a_{2}\right)^{2}\ldots-a_{k-1}\right)^{2}-a_{k}\right)-\frac{1}2Q\left(z_{k+1}\right)\right)^{2}-\frac{1}4\left(Q\left(z_{k+1}\right)\right)^{2}\\ | ||
+ | &=\left(Q\left(z\right)-\frac{1}2Q\left(z_{k+1}\right)\right)^{2}-\frac{1}4\left(Q\left(z_{k+1}\right)\right)^{2}=Q\left(z\right)\left(Q\left(z\right)-Q\left(z_{k+1}\right)\right). | ||
+ | \end{align*} | ||
+ | </cmath> | ||
− | |||
− | <math> =\left | + | Then as <math>Q\left(z_{i}\right)=0</math> for <math>i\in\left\{1;\;2;\;\ldots;\;k\right\}</math>, we have |
+ | <cmath>R\left(z_{i}\right)=Q\left(z_{i}\right)\left(Q\left(z_{i}\right)-Q\left(z_{k+1}\right)\right)=0</cmath> | ||
+ | for all <math>i\in\left\{1;\;2;\;\ldots;\;k\right\}</math>. Also, | ||
+ | <cmath>R\left(z_{k+1}\right)=Q\left(z_{k+1}\right)\left(Q\left(z_{k+1}\right)-Q\left(z_{k+1}\right)\right)=0.</cmath> | ||
+ | Thus, <math>R\left(z_{i}\right)=0</math> holds for every <math>i\in\left\{1;\;2;\;\ldots;\;k+1\right\}</math>, and this proves the lemma for <math>n = k + 1</math>. Hence, the induction step is complete, and the lemma is proven. | ||
− | <math> = | + | As the problem is a special case of the lemma (<math>n=1992</math>), we are done. |
+ | == See Also == | ||
− | + | {{USAMO box|year=1992|num-b=4|after=Last Question}} | |
− | + | {{MAA Notice}} | |
− | |||
− | + | [[Category:Olympiad Algebra Problems]] |
Latest revision as of 01:21, 2 September 2016
Problem 5
Let be a polynomial with complex coefficients which is of degree and has distinct zeros. Prove that there exist complex numbers such that divides the polynomial .
Solution
Since the zeros of the polynomial are distinct, the polynomial divides the polynomial if and only if for every . So it is enough to show that for any complex numbers , there exist complex numbers , such that the polynomial satisfies for every . This is a special case of the following lemma.
Lemma: Let be a positive integer, and be complex numbers. Then, there exist complex numbers such that the polynomial satisfies for every .
Proof: We use induction over .
For , the lemma is trivial, since , so we can take , and then the polynomial clearly satisfies .
Let be a positive integer. Assume that for , the lemma is true. Therefore, there exist complex numbers such that the polynomial satisfies for every . Then we wish to prove that for any complex numbers , there exist complex numbers such that the polynomial satisfies for every . We will construct this polynomial from the polynomial .
Let for every , and let and . Then,
Then as for , we have
for all . Also,
Thus, holds for every , and this proves the lemma for . Hence, the induction step is complete, and the lemma is proven.
As the problem is a special case of the lemma (), we are done.
See Also
1992 USAMO (Problems • Resources) | ||
Preceded by Problem 4 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.