Difference between revisions of "2010 AIME II Problems/Problem 9"
(→Solution) |
m |
||
(21 intermediate revisions by 11 users not shown) | |||
Line 1: | Line 1: | ||
− | == Problem | + | __TOC__ |
− | Let <math>ABCDEF</math> be a regular hexagon. Let <math>G</math>, <math>H</math>, <math>I</math>, <math>J</math>, <math>K</math>, and <math>L</math> be the | + | |
+ | == Problem == | ||
+ | Let <math>ABCDEF</math> be a [[regular polygon|regular]] [[hexagon]]. Let <math>G</math>, <math>H</math>, <math>I</math>, <math>J</math>, <math>K</math>, and <math>L</math> be the [[midpoint]]s of sides <math>AB</math>, <math>BC</math>, <math>CD</math>, <math>DE</math>, <math>EF</math>, and <math>AF</math>, respectively. The [[segment]]s <math>\overline{AH}</math>, <math>\overline{BI}</math>, <math>\overline{CJ}</math>, <math>\overline{DK}</math>, <math>\overline{EL}</math>, and <math>\overline{FG}</math> bound a smaller regular hexagon. Let the [[ratio]] of the area of the smaller hexagon to the area of <math>ABCDEF</math> be expressed as a fraction <math>\frac {m}{n}</math> where <math>m</math> and <math>n</math> are [[relatively prime]] positive integers. Find <math>m + n</math>. | ||
==Solution== | ==Solution== | ||
Line 38: | Line 40: | ||
− | label('A',A, | + | label('$A$',A,(1,0)); |
− | label('B',B,NE); | + | label('$B$',B,NE); |
− | label('C',C,NW); | + | label('$C$',C,NW); |
− | label('D',D, W); | + | label('$D$',D, W); |
− | label('E',E,SW); | + | label('$E$',E,SW); |
− | label('F',F,SE); | + | label('$F$',F,SE); |
− | label('G',G,NE); | + | label('$G$',G,NE); |
− | label('H',H, | + | label('$H$',H, (0,1)); |
− | label('I',I,NW); | + | label('$I$',I,NW); |
− | label('J',J,SW); | + | label('$J$',J,SW); |
− | label('K',K, S); | + | label('$K$',K, S); |
− | label('L',L,SE); | + | label('$L$',L,SE); |
− | label('M',M); | + | label('$M$',M); |
− | label('N',N); | + | label('$N$',N); |
+ | label('$O$',(0,0),NE); dot((0,0)); | ||
</asy></center> | </asy></center> | ||
− | Let <math>M</math> be the intersection of <math>\overline{ | + | Let <math>M</math> be the intersection of <math>\overline{AH}</math> and <math>\overline{BI}</math>. |
− | + | Let <math>N</math> be the intersection of <math>\overline{BI}</math> and <math>\overline{CJ}</math>. | |
− | + | Let <math>O</math> be the center. | |
− | Note that <math>\angle BMH</math> is the vertical angle to an angle of regular hexagon, | + | ===Solution 1=== |
+ | Without loss of generality, let <math>BC=2.</math> | ||
+ | |||
+ | Note that <math>\angle BMH</math> is the vertical angle to an angle of the regular hexagon, so it has a measure of <math>120^\circ</math>. | ||
Because <math>\triangle ABH</math> and <math>\triangle BCI</math> are rotational images of one another, we get that <math>\angle{MBH}=\angle{HAB}</math> and hence <math>\triangle ABH \sim \triangle BMH \sim \triangle BCI</math>. | Because <math>\triangle ABH</math> and <math>\triangle BCI</math> are rotational images of one another, we get that <math>\angle{MBH}=\angle{HAB}</math> and hence <math>\triangle ABH \sim \triangle BMH \sim \triangle BCI</math>. | ||
− | Using a | + | Using a similar argument, <math>NI=MH</math>, and |
+ | |||
+ | <cmath>MN=BI-NI-BM=BI-(BM+MH).</cmath> | ||
+ | |||
+ | Applying the [[Law of cosines]] on <math>\triangle BCI</math>, <math>BI=\sqrt{2^2+1^2-2(2)(1)(\cos(120^\circ))}=\sqrt{7}</math> | ||
+ | |||
+ | <cmath>\begin{align*}\frac{BC+CI}{BI}&=\frac{3}{\sqrt{7}}=\frac{BM+MH}{BH} \\ | ||
+ | BM+MH&=\frac{3BH}{\sqrt{7}}=\frac{3}{\sqrt{7}} \\ | ||
+ | MN&=BI-(BM+MH)=\sqrt{7}-\frac{3}{\sqrt{7}}=\frac{4}{\sqrt{7}} \\ | ||
+ | \frac{\text{Area of smaller hexagon}}{\text{Area of bigger hexagon}}&=\left(\frac{MN}{BC}\right)^2=\left(\frac{2}{\sqrt{7}}\right)^2=\frac{4}{7}\end{align*}</cmath> | ||
+ | |||
+ | Thus, the answer is <math>4 + 7 = \boxed{011}.</math> | ||
+ | |||
+ | ===Solution 2 (Coordinate Bash)=== | ||
+ | We can use coordinates. Let <math>O</math> be at <math>(0,0)</math> with <math>A</math> at <math>(1,0)</math>, | ||
+ | |||
+ | then <math>B</math> is at <math>(\cos(60^\circ),\sin(60^\circ))=\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)</math>, | ||
+ | |||
+ | <math>C</math> is at <math>(\cos(120^\circ),\sin(120^\circ))=\left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right)</math>, | ||
+ | |||
+ | <math>D</math> is at <math>(\cos(180^\circ),\sin(180^\circ))=(-1,0)</math>, | ||
− | < | + | <cmath>\begin{align*}&H=\frac{B+C}{2}=\left(0,\frac{\sqrt{3}}{2}\right) \\ |
+ | &I=\frac{C+D}{2}=\left(-\frac{3}{4},\frac{\sqrt{3}}{4}\right)\end{align*}</cmath> | ||
− | + | <br/> | |
− | <math>\frac{ | + | Line <math>AH</math> has the slope of <math>-\frac{\sqrt{3}}{2}</math> |
+ | and the equation of <math>y=-\frac{\sqrt{3}}{2}(x-1)</math> | ||
− | < | + | <br/> |
− | <math> | + | Line <math>BI</math> has the slope of <math>\frac{\sqrt{3}}{5}</math> |
+ | and the equation <math>y-\frac{3}{2}=\frac{\sqrt{3}}{5}\left(x-\frac{1}{2}\right)</math> | ||
− | < | + | <br/> |
− | Thus, answer is <math>\boxed{011}</math> | + | Let's solve the system of equation to find <math>M</math> |
+ | |||
+ | <cmath>\begin{align*}-\frac{\sqrt{3}}{2}(x-1)-\frac{3}{2}&=\frac{\sqrt{3}}{5}\left(x-\frac{1}{2}\right) \\ | ||
+ | -5\sqrt{3}x&=2\sqrt{3}x-\sqrt{3} \\ | ||
+ | x&=\frac{1}{7} \\ | ||
+ | y&=-\frac{\sqrt{3}}{2}(x-1)=\frac{3\sqrt{3}}{7}\end{align*}</cmath> | ||
+ | |||
+ | Finally, | ||
+ | |||
+ | <cmath>\begin{align*}&\sqrt{x^2+y^2}=OM=\frac{1}{7}\sqrt{1^2+(3\sqrt{3})^2}=\frac{1}{7}\sqrt{28}=\frac{2}{\sqrt{7}} \\ | ||
+ | &\frac{\text{Area of smaller hexagon}}{\text{Area of bigger hexagon}}=\left(\frac{OM}{OA}\right)^2=\left(\frac{2}{\sqrt{7}}\right)^2=\frac{4}{7}\end{align*}</cmath> | ||
+ | |||
+ | Thus, the answer is <math>\boxed{011}</math>. | ||
+ | |||
+ | |||
+ | Diagram (by dragoon) | ||
+ | https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvZC82L2ZiNDljZmZiNjUzYWE4NGRmNmIwYTljMWQxZDU2ZDc1ZmNiMDQ3LmpwZWc=&rn=RDQ3ODA2RjUtMzlDNi00QzQ3LUE2OTYtMjlCQkE4NThDNkRBLmpwZWc= | ||
+ | |||
+ | ==Solution 3== | ||
+ | Use the diagram. Now notice that all of the "overlapping triangles" are congruent. You can use the AA similarity to see that the small triangles are similar to the large triangles. Now you can proceed as in Solution 1. | ||
== See also == | == See also == | ||
{{AIME box|year=2010|num-b=8|num-a=10|n=II}} | {{AIME box|year=2010|num-b=8|num-a=10|n=II}} | ||
+ | |||
+ | [[Category:Intermediate Geometry Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 21:22, 27 August 2023
Contents
Problem
Let be a regular hexagon. Let , , , , , and be the midpoints of sides , , , , , and , respectively. The segments , , , , , and bound a smaller regular hexagon. Let the ratio of the area of the smaller hexagon to the area of be expressed as a fraction where and are relatively prime positive integers. Find .
Solution
Let be the intersection of and .
Let be the intersection of and .
Let be the center.
Solution 1
Without loss of generality, let
Note that is the vertical angle to an angle of the regular hexagon, so it has a measure of .
Because and are rotational images of one another, we get that and hence .
Using a similar argument, , and
Applying the Law of cosines on ,
Thus, the answer is
Solution 2 (Coordinate Bash)
We can use coordinates. Let be at with at ,
then is at ,
is at ,
is at ,
Line has the slope of and the equation of
Line has the slope of and the equation
Let's solve the system of equation to find
Finally,
Thus, the answer is .
Solution 3
Use the diagram. Now notice that all of the "overlapping triangles" are congruent. You can use the AA similarity to see that the small triangles are similar to the large triangles. Now you can proceed as in Solution 1.
See also
2010 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.