Difference between revisions of "1993 AJHSME Problems/Problem 2"

(Created page with '== Problem == When the fraction <math>\dfrac{49}{84}</math> is expressed in simplest form, then the sum of the numerator and the denominator will be <math>\text{(A)}\ 11 \qquad…')
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
== Problem ==
+
==Problem==
 +
 
 
When the fraction <math>\dfrac{49}{84}</math> is expressed in simplest form, then the sum of the numerator and the denominator will be  
 
When the fraction <math>\dfrac{49}{84}</math> is expressed in simplest form, then the sum of the numerator and the denominator will be  
  
 
<math>\text{(A)}\ 11 \qquad \text{(B)}\ 17 \qquad \text{(C)}\ 19 \qquad \text{(D)}\ 33 \qquad \text{(E)}\ 133</math>
 
<math>\text{(A)}\ 11 \qquad \text{(B)}\ 17 \qquad \text{(C)}\ 19 \qquad \text{(D)}\ 33 \qquad \text{(E)}\ 133</math>
  
== Solution ==  
+
==Solution==  
The fraction is already in simplest form.
+
 
The prime factorization of <math>49</math> is <math>7^2</math> and for <math>84</math> it is <math>2*37</math>, so the greatest common factor is 1.  
+
<cmath>\begin{align*}
 +
\dfrac{49}{84} &= \dfrac{7^2}{2^2\cdot 3\cdot 7} \\
 +
&= \dfrac{7}{2^2\cdot 3} \\
 +
&= \dfrac{7}{12}.
 +
\end{align*}</cmath>
 +
 
 +
The sum of the numerator and denominator is <math>7+12=19\rightarrow \boxed{\text{C}}</math>.
 +
 
 +
==See Also==
  
Then we add <math>49+84</math> and get <math>133 \Rightarrow E</math>.
+
{{AJHSME box|year=1993|num-b=1|num-a=3}}
 +
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 23:10, 4 July 2013

Problem

When the fraction $\dfrac{49}{84}$ is expressed in simplest form, then the sum of the numerator and the denominator will be

$\text{(A)}\ 11 \qquad \text{(B)}\ 17 \qquad \text{(C)}\ 19 \qquad \text{(D)}\ 33 \qquad \text{(E)}\ 133$

Solution

\begin{align*} \dfrac{49}{84} &= \dfrac{7^2}{2^2\cdot 3\cdot 7} \\ &= \dfrac{7}{2^2\cdot 3} \\ &= \dfrac{7}{12}. \end{align*}

The sum of the numerator and denominator is $7+12=19\rightarrow \boxed{\text{C}}$.

See Also

1993 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png