Difference between revisions of "2010 AMC 12A Problems/Problem 11"

(Created page with '== Problem == The solution of the equation <math>7^{x+7} = 8^x</math> can be expressed in the form <math>x = \log_b 7^7</math>. What is <math>b</math>? <math>\textbf{(A)}\ \frac…')
 
(Solution 2)
 
(7 intermediate revisions by 5 users not shown)
Line 4: Line 4:
 
<math>\textbf{(A)}\ \frac{7}{15} \qquad \textbf{(B)}\ \frac{7}{8} \qquad \textbf{(C)}\ \frac{8}{7} \qquad \textbf{(D)}\ \frac{15}{8} \qquad \textbf{(E)}\ \frac{15}{7}</math>
 
<math>\textbf{(A)}\ \frac{7}{15} \qquad \textbf{(B)}\ \frac{7}{8} \qquad \textbf{(C)}\ \frac{8}{7} \qquad \textbf{(D)}\ \frac{15}{8} \qquad \textbf{(E)}\ \frac{15}{7}</math>
  
== Solution ==
+
== Solution 1 ==
 
This problem is quickly solved with knowledge of the laws of exponents and logarithms.
 
This problem is quickly solved with knowledge of the laws of exponents and logarithms.
<math> 7^{x+7} = 8^x </math>
+
 
<math> 7^x*7^7 = 8^x </math>
+
<cmath>\begin{align*} 7^{x+7} &= 8^x \\
<math> \left(\frac{8}{7}\right)^x = 7^7 </math>
+
7^x*7^7 &= 8^x \\
<math> x = \log_{8/7}7^7 </math>
+
\left(\frac{8}{7}\right)^x &= 7^7 \\
Therefore, our answer is <math>\boxed{\textbf{(C)}\ \frac{8}{7}}</math>.
+
x &= \log_{8/7}7^7 \end{align*}</cmath>
 +
 
 +
Since we are looking for the base of the logarithm, our answer is <math>\boxed{\textbf{(C)}\ \frac{8}{7}}</math>.
 +
 
 +
== Solution 2 ==
 +
First, take the <math>\log_{7}</math> of both sides, which gives us <math>x+7=\log_{7}8^x=x\log_{7}8</math>. We move the <math>x</math> terms to 1 side. <math>x(\log_{7}8-1)=7</math>. Isolate <math>x</math> and manipulate the answer. <math>x=\frac{7}{\log_{7}\frac{8}{7}}=7\log_{\frac{8}{7}}7=\log_{\frac{8}{7}}7^7</math>. Therefore, the answer is <math>\frac{8}{7}=\fbox{C}</math>
 +
 
 +
==Video Solution1 (Clever Manipulations)==
 +
https://youtu.be/xGeL7864QLM
 +
 
 +
~Education, the Study of Everything
 +
 
 +
== See also ==
 +
{{AMC12 box|year=2010|num-b=10|num-a=12|ab=A}}
 +
 
 +
[[Category:Introductory Number Theory Problems]]
 +
{{MAA Notice}}

Latest revision as of 10:31, 4 October 2023

Problem

The solution of the equation $7^{x+7} = 8^x$ can be expressed in the form $x = \log_b 7^7$. What is $b$?

$\textbf{(A)}\ \frac{7}{15} \qquad \textbf{(B)}\ \frac{7}{8} \qquad \textbf{(C)}\ \frac{8}{7} \qquad \textbf{(D)}\ \frac{15}{8} \qquad \textbf{(E)}\ \frac{15}{7}$

Solution 1

This problem is quickly solved with knowledge of the laws of exponents and logarithms.

\begin{align*} 7^{x+7} &= 8^x \\  7^x*7^7 &= 8^x \\  \left(\frac{8}{7}\right)^x &= 7^7 \\  x &= \log_{8/7}7^7 \end{align*}

Since we are looking for the base of the logarithm, our answer is $\boxed{\textbf{(C)}\ \frac{8}{7}}$.

Solution 2

First, take the $\log_{7}$ of both sides, which gives us $x+7=\log_{7}8^x=x\log_{7}8$. We move the $x$ terms to 1 side. $x(\log_{7}8-1)=7$. Isolate $x$ and manipulate the answer. $x=\frac{7}{\log_{7}\frac{8}{7}}=7\log_{\frac{8}{7}}7=\log_{\frac{8}{7}}7^7$. Therefore, the answer is $\frac{8}{7}=\fbox{C}$

Video Solution1 (Clever Manipulations)

https://youtu.be/xGeL7864QLM

~Education, the Study of Everything

See also

2010 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png