Difference between revisions of "2009 AMC 10B Problems/Problem 13"

(New page: the answer is C i think....)
 
m (Undo revision 189358 by Lkarhat (talk))
(Tag: Undo)
 
(7 intermediate revisions by 7 users not shown)
Line 1: Line 1:
the answer is C
+
== Problem ==
  
i think....
+
As shown below, convex pentagon <math>ABCDE</math> has sides <math>AB=3</math>, <math>BC=4</math>, <math>CD=6</math>, <math>DE=3</math>, and <math>EA=7</math>. The pentagon is originally positioned in the plane with vertex <math>A</math> at the origin and vertex <math>B</math> on the positive <math>x</math>-axis. The pentagon is then rolled clockwise to the right along the <math>x</math>-axis. Which side will touch the point <math>x=2009</math> on the <math>x</math>-axis?
 +
 
 +
<asy>
 +
unitsize(3mm);
 +
defaultpen(linewidth(.8pt)+fontsize(8pt));
 +
dotfactor=4;
 +
 
 +
pair A=(0,0), Ep=7*dir(105), B=3*dir(0);
 +
pair D=Ep+B;
 +
pair C=intersectionpoints(Circle(D,6),Circle(B,4))[1];
 +
pair[] ds={A,B,C,D,Ep};
 +
 
 +
dot(ds);
 +
draw(B--C--D--Ep--A);
 +
draw((6,6)..(8,4)..(8,3),EndArrow(3));
 +
xaxis("$x$",-8,14,EndArrow(3));
 +
 
 +
label("$E$",Ep,NW);
 +
label("$D$",D,NE);
 +
label("$C$",C,E);
 +
label("$B$",B,SE);
 +
label("$(0,0)=A$",A,SW);
 +
 
 +
label("$3$",midpoint(A--B),N);
 +
label("$4$",midpoint(B--C),NW);
 +
label("$6$",midpoint(C--D),NE);
 +
label("$3$",midpoint(D--Ep),S);
 +
label("$7$",midpoint(Ep--A),W);
 +
</asy>
 +
 
 +
<math>
 +
\text{(A) } \overline{AB}
 +
\qquad
 +
\text{(B) } \overline{BC}
 +
\qquad
 +
\text{(C) } \overline{CD}
 +
\qquad
 +
\text{(D) } \overline{DE}
 +
\qquad
 +
\text{(E) } \overline{EA}
 +
</math>
 +
[[Category: Introductory Geometry Problems]]
 +
 
 +
== Solution ==
 +
 
 +
The perimeter of the polygon is <math>3+4+6+3+7 = 23</math>. Hence as we roll the polygon to the right, every <math>23</math> units the side <math>\overline{AB}</math> will be the bottom side.
 +
 
 +
We have <math>2009 = 23 \times 87 + 8</math>. Thus at some point in time we will get the situation when <math>A=(2001,0)</math> and <math>\overline{AB}</math> is the bottom side. Obviously, at this moment <math>B=(2004,0)</math>.
 +
 
 +
After that, the polygon rotates around <math>B</math> until point <math>C</math> hits the <math>x</math> axis at <math>(2008,0)</math>.
 +
 
 +
And finally, the polygon rotates around <math>C</math> until point <math>D</math> hits the <math>x</math> axis at <math>(2014,0)</math>.
 +
At this point the side <math>\boxed{\overline{CD}}</math> touches the point <math>(2009,0)</math>. So the answer is <math>\boxed{C}</math>
 +
 
 +
==Solution 2: Mod Arithmetic==
 +
The perimeter is <math>23</math> and <math>2009\equiv8(</math>mod <math>23)</math>, so it will end up on side <math>AB</math> + a total of 8 more units. <math>4<8</math>, but <math>4+6=10>8</math>, so it ends on side <math>CD</math> for an answer of  <math>\boxed{C}</math>.
 +
 
 +
== See Also ==
 +
 
 +
{{AMC10 box|year=2009|ab=B|num-b=12|num-a=14}}
 +
{{MAA Notice}}

Latest revision as of 17:39, 9 February 2023

Problem

As shown below, convex pentagon $ABCDE$ has sides $AB=3$, $BC=4$, $CD=6$, $DE=3$, and $EA=7$. The pentagon is originally positioned in the plane with vertex $A$ at the origin and vertex $B$ on the positive $x$-axis. The pentagon is then rolled clockwise to the right along the $x$-axis. Which side will touch the point $x=2009$ on the $x$-axis?

[asy] unitsize(3mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); dotfactor=4;  pair A=(0,0), Ep=7*dir(105), B=3*dir(0); pair D=Ep+B; pair C=intersectionpoints(Circle(D,6),Circle(B,4))[1]; pair[] ds={A,B,C,D,Ep};  dot(ds); draw(B--C--D--Ep--A); draw((6,6)..(8,4)..(8,3),EndArrow(3)); xaxis("$x$",-8,14,EndArrow(3));  label("$E$",Ep,NW); label("$D$",D,NE); label("$C$",C,E); label("$B$",B,SE); label("$(0,0)=A$",A,SW);  label("$3$",midpoint(A--B),N); label("$4$",midpoint(B--C),NW); label("$6$",midpoint(C--D),NE); label("$3$",midpoint(D--Ep),S); label("$7$",midpoint(Ep--A),W); [/asy]

$\text{(A) } \overline{AB} \qquad \text{(B) } \overline{BC} \qquad \text{(C) } \overline{CD} \qquad \text{(D) } \overline{DE} \qquad \text{(E) } \overline{EA}$

Solution

The perimeter of the polygon is $3+4+6+3+7 = 23$. Hence as we roll the polygon to the right, every $23$ units the side $\overline{AB}$ will be the bottom side.

We have $2009 = 23 \times 87 + 8$. Thus at some point in time we will get the situation when $A=(2001,0)$ and $\overline{AB}$ is the bottom side. Obviously, at this moment $B=(2004,0)$.

After that, the polygon rotates around $B$ until point $C$ hits the $x$ axis at $(2008,0)$.

And finally, the polygon rotates around $C$ until point $D$ hits the $x$ axis at $(2014,0)$. At this point the side $\boxed{\overline{CD}}$ touches the point $(2009,0)$. So the answer is $\boxed{C}$

Solution 2: Mod Arithmetic

The perimeter is $23$ and $2009\equiv8($mod $23)$, so it will end up on side $AB$ + a total of 8 more units. $4<8$, but $4+6=10>8$, so it ends on side $CD$ for an answer of $\boxed{C}$.

See Also

2009 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png