Difference between revisions of "2002 AMC 10B Problems/Problem 17"
(New page: 17. A regular octagon <math>ABCDEFGH</math> has sides of length two. Find the area of <math>\triangle ADG</math>. <math>\textbf{(A) } 4 + 2\sqrt2 \qquad \textbf{(B) } 6 + \sqrt2\qquad \t...) |
(→Solution) |
||
(10 intermediate revisions by 8 users not shown) | |||
Line 1: | Line 1: | ||
− | + | == Problem == | |
+ | |||
+ | A regular octagon <math>ABCDEFGH</math> has sides of length two. Find the area of <math>\triangle ADG</math>. | ||
<math>\textbf{(A) } 4 + 2\sqrt2 \qquad \textbf{(B) } 6 + \sqrt2\qquad \textbf{(C) } 4 + 3\sqrt2 \qquad \textbf{(D) } 3 + 4\sqrt2 \qquad \textbf{(E) } 8 + \sqrt2</math> | <math>\textbf{(A) } 4 + 2\sqrt2 \qquad \textbf{(B) } 6 + \sqrt2\qquad \textbf{(C) } 4 + 3\sqrt2 \qquad \textbf{(D) } 3 + 4\sqrt2 \qquad \textbf{(E) } 8 + \sqrt2</math> | ||
+ | |||
+ | == Solution == | ||
+ | |||
+ | <asy> | ||
+ | unitsize(1cm); | ||
+ | defaultpen(0.8); | ||
+ | pair[] A = new pair[8]; | ||
+ | A[0]=(0,0); | ||
+ | for (int i=1; i<8; ++i) A[i] = A[i-1] + 2*dir(45*(i-1)); | ||
+ | draw( A[0]--A[1]--A[2]--A[3]--A[4]--A[5]--A[6]--A[7]--cycle ); | ||
+ | label("$A$",A[0],SW); | ||
+ | label("$B$",A[1],SE); | ||
+ | label("$C$",A[2],SE); | ||
+ | label("$D$",A[3],NE); | ||
+ | label("$E$",A[4],NE); | ||
+ | label("$F$",A[5],NW); | ||
+ | label("$G$",A[6],NW); | ||
+ | label("$H$",A[7],SW); | ||
+ | filldraw( A[0]--A[3]--A[6]--cycle, lightgray, black ); | ||
+ | pair P = intersectionpoint( A[3]--A[6], A[0]--A[5] ); | ||
+ | draw( A[0]--P ); | ||
+ | draw( P -- A[5], dashed ); | ||
+ | label("$P$",P,NE); | ||
+ | draw( A[1]--A[4], dashed ); | ||
+ | pair Q = intersectionpoint( A[3]--A[6], A[1]--A[4] ); | ||
+ | label("$Q$",Q,NW); | ||
+ | </asy> | ||
+ | |||
+ | The area of the triangle <math>ADG</math> can be computed as <math>\frac{DG \cdot AP}2</math>. We will now find <math>DG</math> and <math>AP</math>. | ||
+ | |||
+ | Clearly, <math>PFG</math> is a right isosceles triangle with hypotenuse of length <math>2</math>, hence <math>PG=\sqrt 2</math>. | ||
+ | The same holds for triangle <math>QED</math> and its leg <math>QD</math>. The length of <math>PQ</math> is equal to <math>FE=2</math>. | ||
+ | Hence <math>GD = 2 + 2\sqrt 2</math>, and <math>AP = PD = 2 + \sqrt 2</math>. | ||
+ | |||
+ | Then the area of <math>ADG</math> equals <math>\frac{DG \cdot AP}2 = \frac{(2+2\sqrt 2)(2+\sqrt 2)}2 = \frac{8+6\sqrt 2}2 = \boxed{\textbf{(C)}=4+3\sqrt 2}</math>. | ||
+ | |||
+ | == See Also == | ||
+ | |||
+ | {{AMC10 box|year=2002|ab=B|num-b=16|num-a=18}} | ||
+ | |||
+ | [[Category:Introductory Geometry Problems]] | ||
+ | [[Category:Area Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 12:27, 21 May 2021
Problem
A regular octagon has sides of length two. Find the area of .
Solution
The area of the triangle can be computed as . We will now find and .
Clearly, is a right isosceles triangle with hypotenuse of length , hence . The same holds for triangle and its leg . The length of is equal to . Hence , and .
Then the area of equals .
See Also
2002 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.