Difference between revisions of "2008 AMC 10B Problems/Problem 6"
Person1133 (talk | contribs) |
Idk12345678 (talk | contribs) |
||
(5 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Points B and C lie on AD. The length of AB is 4 times the length of BD, and the length of AC is 9 times the length of CD. The length of BC is what fraction of the length of AD? | + | Points <math>B</math> and <math>C</math> lie on <math>\overline{AD}</math>. The length of <math>\overline{AB}</math> is <math>4</math> times the length of <math>\overline{BD}</math>, and the length of <math>\overline{AC}</math> is <math>9</math> times the length of <math>\overline{CD}</math>. The length of <math>\overline{BC}</math> is what fraction of the length of <math>\overline{AD}</math>? |
− | A) 1 | + | <math> \textbf{(A)}\ \frac{1}{36}\qquad\textbf{(B)}\ \frac{1}{13}\qquad\textbf{(C)}\ \frac{1}{10}\qquad\textbf{(D)}\ \frac{5}{36}\qquad\textbf{(E)}\ \frac{1}{5} </math> |
− | ==Solution== | + | ==Solution 1== |
− | Let CD = 1. Then AB = 4(BC+1) | + | Let <math>CD = 1</math>. Then <math>AB = 4(BC + 1)</math> and <math>AB + BC = 9\cdot1</math>. From this system of equations, we obtain <math>BC = 1</math>. Adding <math>CD</math> to both sides of the second equation, we obtain <math>AD = AB + BC + CD = 9 + 1 = 10</math>. Thus, <math>\frac{BC}{AD} = \frac{1}{10} \implies\text{(C)}</math> |
+ | |||
+ | ==Solution 2== | ||
+ | Let <math>x = BD</math> and <math>y = CD</math>. Therefore, <math>AB = 4x</math> and <math>AC = 9y</math>, as shown in the diagram(the labels on the bottom are for that line segment while the labels on the top are from one point to the left to one point to the right). | ||
+ | <center><asy> | ||
+ | dot((0,0)); | ||
+ | label("A", (0,0), S); | ||
+ | dot((5,0)); | ||
+ | label("B", (5,0), S); | ||
+ | dot((10,0)); | ||
+ | label("C", (10,0), S); | ||
+ | dot((15,0)); | ||
+ | label("D", (15,0), S); | ||
+ | draw((0,0)--(5,0)); | ||
+ | draw((5,0)--(10,0)); | ||
+ | draw((10,0)--(15,0)); | ||
+ | draw((0,0)--(10,0)); | ||
+ | draw((10,0)--(15,0)); | ||
+ | label("$4x$", (0,0)--(5,0), S); | ||
+ | label("$9y$", (0,0)--(10,0), N); | ||
+ | label("$y$", (10,0)--(15,0), S); | ||
+ | label("$x$", (5,0)--(15,0), N); | ||
+ | </asy></center> | ||
+ | |||
+ | From this, we can see that <math>AD = 10y = 5x</math>, and since <math>BC = BD - CD = x-y</math>. Now, our ratio is <math>\frac{x-y}{AD}</math>. We can split this into 2 fractions: <math>\frac{x}{AD} - \frac{y}{AD} = \frac{x}{5x} - \frac{y}{10y} = \frac{1}{5} - \frac{1}{10} = \boxed{\textbf{(C)}\ \frac{1}{10}} </math> | ||
+ | |||
+ | ~idk12345678 | ||
==See also== | ==See also== | ||
{{AMC10 box|year=2008|ab=B|num-b=5|num-a=7}} | {{AMC10 box|year=2008|ab=B|num-b=5|num-a=7}} | ||
+ | {{MAA Notice}} |
Latest revision as of 17:09, 12 April 2024
Contents
Problem
Points and lie on . The length of is times the length of , and the length of is times the length of . The length of is what fraction of the length of ?
Solution 1
Let . Then and . From this system of equations, we obtain . Adding to both sides of the second equation, we obtain . Thus,
Solution 2
Let and . Therefore, and , as shown in the diagram(the labels on the bottom are for that line segment while the labels on the top are from one point to the left to one point to the right).
From this, we can see that , and since . Now, our ratio is . We can split this into 2 fractions:
~idk12345678
See also
2008 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.