Difference between revisions of "1999 AHSME Problems/Problem 24"
(New page: == Problem == Six points on a circle are given. Four of the chords joining pairs of the six points are selected at random. What is the probability that the four chords form a convex quadri...) |
(→See also) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
<math> \mathrm{(A) \ } \frac 1{15} \qquad \mathrm{(B) \ } \frac 1{91} \qquad \mathrm{(C) \ } \frac 1{273} \qquad \mathrm{(D) \ } \frac 1{455} \qquad \mathrm{(E) \ } \frac 1{1365}</math> | <math> \mathrm{(A) \ } \frac 1{15} \qquad \mathrm{(B) \ } \frac 1{91} \qquad \mathrm{(C) \ } \frac 1{273} \qquad \mathrm{(D) \ } \frac 1{455} \qquad \mathrm{(E) \ } \frac 1{1365}</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== See also == | == See also == | ||
{{AHSME box|year=1999|num-b=23|num-a=25}} | {{AHSME box|year=1999|num-b=23|num-a=25}} | ||
+ | {{MAA Notice}} | ||
+ | [[Category:Introductory Combinatorics Problems]] |
Latest revision as of 13:22, 11 May 2024
Problem
Six points on a circle are given. Four of the chords joining pairs of the six points are selected at random. What is the probability that the four chords form a convex quadrilateral?
See also
1999 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.