GET READY FOR THE AMC 10 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 10 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2004 AMC 10B Problems"

m (Problem 20)
m (added back p20 which was missing)
 
(38 intermediate revisions by 22 users not shown)
Line 1: Line 1:
== Problem 1 ==
+
{{AMC10 Problems|year=2004|ab=B}}
  
Each row of the Misty Moon Amphitheater has 33 seats. Rows 12 through 22 are reserved for a youth club. How many seats are reserved for this club?
+
==Problem 1==
 +
 
 +
Each row of the Misty Moon Amphitheater has <math>33</math> seats. Rows <math>12</math> through <math>22</math> are reserved for a youth club. How many seats are reserved for this club?
  
 
<math> \mathrm{(A) \ } 297 \qquad \mathrm{(B) \ } 330\qquad \mathrm{(C) \ } 363\qquad \mathrm{(D) \ } 396\qquad \mathrm{(E) \ } 726 </math>
 
<math> \mathrm{(A) \ } 297 \qquad \mathrm{(B) \ } 330\qquad \mathrm{(C) \ } 363\qquad \mathrm{(D) \ } 396\qquad \mathrm{(E) \ } 726 </math>
Line 7: Line 9:
 
[[2004 AMC 10B Problems/Problem 1|Solution]]
 
[[2004 AMC 10B Problems/Problem 1|Solution]]
  
== Problem 2 ==
+
==Problem 2==
  
How many two-digit positive integers have at least one 7 as a digit?
+
How many two-digit positive integers have at least one <math>7</math> as a digit?
  
 
<math> \mathrm{(A) \ } 10 \qquad \mathrm{(B) \ } 18\qquad \mathrm{(C) \ } 19 \qquad \mathrm{(D) \ } 20\qquad \mathrm{(E) \ } 30 </math>
 
<math> \mathrm{(A) \ } 10 \qquad \mathrm{(B) \ } 18\qquad \mathrm{(C) \ } 19 \qquad \mathrm{(D) \ } 20\qquad \mathrm{(E) \ } 30 </math>
Line 17: Line 19:
 
== Problem 3 ==
 
== Problem 3 ==
  
At each basketball practice last week, Jenny made twice as many free throws as she made at the previous practice. At her fifth practice she made 48 free throws. How many free throws did she make at the first practice?
+
At each basketball practice last week, Jenny made twice as many free throws as she made at the previous practice. At her fifth practice she made <math>48</math> free throws. How many free throws did she make at the first practice?
  
 
<math> \mathrm{(A) \ } 3 \qquad \mathrm{(B) \ } 6 \qquad \mathrm{(C) \ } 9 \qquad \mathrm{(D) \ } 12\qquad \mathrm{(E) \ } 15 </math>
 
<math> \mathrm{(A) \ } 3 \qquad \mathrm{(B) \ } 6 \qquad \mathrm{(C) \ } 9 \qquad \mathrm{(D) \ } 12\qquad \mathrm{(E) \ } 15 </math>
Line 25: Line 27:
 
== Problem 4 ==
 
== Problem 4 ==
  
A standard six-sided die is rolled, and P is the product of the five numbers that are visible. What is the largest number that is certain to divide P?
+
A standard six-sided die is rolled, and <math>P</math> is the product of the five numbers that are visible. What is the largest number that is certain to divide <math>P</math>?
  
 
<math> \mathrm{(A) \ } 6 \qquad \mathrm{(B) \ } 12 \qquad \mathrm{(C) \ } 24 \qquad \mathrm{(D) \ } 144\qquad \mathrm{(E) \ } 720 </math>
 
<math> \mathrm{(A) \ } 6 \qquad \mathrm{(B) \ } 12 \qquad \mathrm{(C) \ } 24 \qquad \mathrm{(D) \ } 144\qquad \mathrm{(E) \ } 720 </math>
Line 33: Line 35:
 
== Problem 5 ==
 
== Problem 5 ==
  
In the expression <math>c*a^b-d</math>, the values of <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are <math>0</math>, <math>1</math>, <math>2</math>, and <math>3</math>, although not necessarily in that order. What is the maximum possible value of the result?
+
In the expression <math>c\cdot a^b-d</math>, the values of <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are <math>0</math>, <math>1</math>, <math>2</math>, and <math>3</math>, although not necessarily in that order. What is the maximum possible value of the result?
  
 
<math> \mathrm{(A) \ } 5 \qquad \mathrm{(B) \ } 6\qquad \mathrm{(C) \ } 8 \qquad \mathrm{(D) \ } 9\qquad \mathrm{(E) \ } 10 </math>
 
<math> \mathrm{(A) \ } 5 \qquad \mathrm{(B) \ } 6\qquad \mathrm{(C) \ } 8 \qquad \mathrm{(D) \ } 9\qquad \mathrm{(E) \ } 10 </math>
Line 43: Line 45:
 
Which of the following numbers is a perfect square?
 
Which of the following numbers is a perfect square?
  
<math> \mathrm{(A) \ } 98! * 99! \qquad \mathrm{(B) \ } 98! * 100! \qquad \mathrm{(C) \ } 99! * 100! \qquad \mathrm{(D) \ } 99! * 101! \qquad \mathrm{(E) \ } 100! * 101! </math>
+
<math> \mathrm{(A) \ } 98! \cdot 99! \qquad \mathrm{(B) \ } 98! \cdot 100! \qquad \mathrm{(C) \ } 99! \cdot 100! \qquad \mathrm{(D) \ } 99! \cdot 101! \qquad \mathrm{(E) \ } 100! \cdot 101! </math>
  
 
[[2004 AMC 10B Problems/Problem 6|Solution]]
 
[[2004 AMC 10B Problems/Problem 6|Solution]]
Line 57: Line 59:
 
== Problem 8 ==
 
== Problem 8 ==
  
Minneapolis-St. Paul International Airport is 8 miles southwest of downtown St. Paul and 10 miles southeast of downtown Minneapolis. Which of the following is closest to the number of miles between downtown St. Paul and downtown Minneapolis?
+
Minneapolis-St. Paul International Airport is <math>8</math> miles southwest of downtown St. Paul and <math>10</math> miles southeast of downtown Minneapolis. Which of the following is closest to the number of miles between downtown St. Paul and downtown Minneapolis?
  
 
<math> \mathrm{(A) \ } 13 \qquad \mathrm{(B) \ } 14\qquad \mathrm{(C) \ } 15\qquad \mathrm{(D) \ } 16\qquad \mathrm{(E) \ } 17 </math>
 
<math> \mathrm{(A) \ } 13 \qquad \mathrm{(B) \ } 14\qquad \mathrm{(C) \ } 15\qquad \mathrm{(D) \ } 16\qquad \mathrm{(E) \ } 17 </math>
Line 65: Line 67:
 
== Problem 9 ==
 
== Problem 9 ==
  
A square has sides of length 10, and a circle centered at one of its vertices has radius 10. What is the area of the union of the regions enclosed by the square and the circle?
+
A square has sides of length <math>10</math>, and a circle centered at one of its vertices has radius <math>10</math>. What is the area of the union of the regions enclosed by the square and the circle?
  
 
<math> \mathrm{(A) \ } 200+25\pi \qquad \mathrm{(B) \ } 100+75\pi \qquad \mathrm{(C) \ } 75+100\pi \qquad \mathrm{(D) \ } 100+100\pi \qquad \mathrm{(E) \ } 100+125\pi </math>
 
<math> \mathrm{(A) \ } 200+25\pi \qquad \mathrm{(B) \ } 100+75\pi \qquad \mathrm{(C) \ } 75+100\pi \qquad \mathrm{(D) \ } 100+100\pi \qquad \mathrm{(E) \ } 100+125\pi </math>
Line 73: Line 75:
 
== Problem 10 ==
 
== Problem 10 ==
  
A grocer makes a display of cans in which the top row has one can and each lower row has two more cans than the row above it. If the display contains 100 cans, how many rows does it contain?
+
A grocer makes a display of cans in which the top row has one can and each lower row has two more cans than the row above it. If the display contains <math>100</math> cans, how many rows does it contain?
  
<math> \mathrm{(A) \ } 5 \qquad \mathrm{(B) \ } 8 \qquad \mathrm{(C) \ } 9 \qquad \mathrm{(D) \ } 10\qquad \mathrm{(E) \ } 411 </math>
+
<math> \mathrm{(A) \ } 5 \qquad \mathrm{(B) \ } 8 \qquad \mathrm{(C) \ } 9 \qquad \mathrm{(D) \ } 10\qquad \mathrm{(E) \ } 11 </math>
  
 
[[2004 AMC 10B Problems/Problem 10|Solution]]
 
[[2004 AMC 10B Problems/Problem 10|Solution]]
Line 81: Line 83:
 
== Problem 11 ==
 
== Problem 11 ==
  
Two eight-sided dice each have faces numbered 1 through 8. When the dice are rolled, each face has an equal probability of appearing on the top. What is the probability that the product of the two top numbers is greater than their sum?
+
Two eight-sided dice each have faces numbered <math>1</math> through <math>8</math>. When the dice are rolled, each face has an equal probability of appearing on the top. What is the probability that the product of the two top numbers is greater than their sum?
  
 
<math> \mathrm{(A) \ } \frac{1}{2} \qquad \mathrm{(B) \ } \frac{47}{64} \qquad \mathrm{(C) \ } \frac{3}{4} \qquad \mathrm{(D) \ } \frac{55}{64} \qquad \mathrm{(E) \ } \frac{7}{8} </math>
 
<math> \mathrm{(A) \ } \frac{1}{2} \qquad \mathrm{(B) \ } \frac{47}{64} \qquad \mathrm{(C) \ } \frac{3}{4} \qquad \mathrm{(D) \ } \frac{55}{64} \qquad \mathrm{(E) \ } \frac{7}{8} </math>
Line 88: Line 90:
  
 
== Problem 12 ==
 
== Problem 12 ==
 +
 +
An annulus is the region between two concentric circles. The concentric circles in the figure have radii <math>b</math> and <math>c</math>, with <math>b>c</math>. Let <math>OX</math> be a radius of the larger circle, let <math>XZ</math> be tangent to the smaller circle at <math>Z</math>, and let <math>OY</math> be the radius of the larger circle that contains <math>Z</math>. Let <math>a=XZ</math>, <math>d=YZ</math>, and <math>e=XY</math>. What is the area of the annulus?
 +
 +
<asy>
 +
unitsize(1.5cm);
 +
defaultpen(0.8);
 +
real r1=1.5, r2=2.5;
 +
pair O=(0,0);
 +
path inner=Circle(O,r1), outer=Circle(O,r2);
 +
pair Y=(0,r2), Z=(0,r1), X=intersectionpoint( Z--(Z+(10,0)), outer );
 +
filldraw(outer,lightgray,black);
 +
filldraw(inner,white,black);
 +
draw(X--O--Y); draw(Y--X--Z);
 +
label("$O$",O,SW);
 +
label("$X$",X,E);
 +
label("$Y$",Y,N);
 +
label("$Z$",Z,SW);
 +
label("$a$",X--Z,N);
 +
label("$b$",0.25*X,SE);
 +
label("$c$",O--Z,E);
 +
label("$d$",Y--Z,W);
 +
label("$e$",Y*0.65 + X*0.35,SW);
 +
defaultpen(0.5);
 +
dot(O); dot(X); dot(Z); dot(Y);
 +
</asy>
 +
 +
<math> \mathrm{(A) \ } \pi a^2 \qquad \mathrm{(B) \ } \pi b^2 \qquad \mathrm{(C) \ } \pi c^2 \qquad \mathrm{(D) \ } \pi d^2 \qquad \mathrm{(E) \ } \pi e^2 </math>
  
 
[[2004 AMC 10B Problems/Problem 12|Solution]]
 
[[2004 AMC 10B Problems/Problem 12|Solution]]
Line 111: Line 140:
 
Patty has <math>20</math> coins consisting of nickels and dimes. If her nickels were dimes and her dimes were nickels, she would have <math>70</math> cents more. How much are her coins worth?
 
Patty has <math>20</math> coins consisting of nickels and dimes. If her nickels were dimes and her dimes were nickels, she would have <math>70</math> cents more. How much are her coins worth?
  
<math> \mathrm{(A) \ } \</math> <math>1.15 \qquad \mathrm{(B) \ } \</math> <math>1.20 \qquad \mathrm{(C) \ } \</math> <math>1.25 \qquad \mathrm{(D) \ } \</math> <math>1.30 \qquad \mathrm{(E) \ } \</math> <math>1.35 </math>
+
<math> \textbf{(A)}\ \textdollar 1.15\qquad\textbf{(B)}\ \textdollar 1.20\qquad\textbf{(C)}\ \textdollar 1.25\qquad\textbf{(D)}\ \textdollar 1.30\qquad\textbf{(E)}\ \textdollar 1.35 </math>
  
 
[[2004 AMC 10B Problems/Problem 15|Solution]]
 
[[2004 AMC 10B Problems/Problem 15|Solution]]
Line 119: Line 148:
 
Three circles of radius <math>1</math> are externally tangent to each other and internally tangent to a larger circle. What is the radius of the large circle?
 
Three circles of radius <math>1</math> are externally tangent to each other and internally tangent to a larger circle. What is the radius of the large circle?
  
<math> \mathrm{(A) \ } \frac{2 + \sqrt{6}}{3} \qquad \mathrm{(B) \ } 2 \qquad \mathrm{(C) \ } \frac{2 + 3\sqrt{2}}{2} \qquad \mathrm{(D) \ } \frac{3 + 2\sqrt{2}}{3} \qquad \mathrm{(E) \ } \frac{3 + \sqrt{3}}{2} </math>
+
<math> \mathrm{(A) \ } \frac{2 + \sqrt{6}}{3} \qquad \mathrm{(B) \ } 2 \qquad \mathrm{(C) \ } \frac{2 + 3\sqrt{2}}{2} \qquad \mathrm{(D) \ } \frac{3 + 2\sqrt{3}}{3} \qquad \mathrm{(E) \ } \frac{3 + \sqrt{3}}{2} </math>
  
 
[[2004 AMC 10B Problems/Problem 16|Solution]]
 
[[2004 AMC 10B Problems/Problem 16|Solution]]
Line 125: Line 154:
 
== Problem 17 ==
 
== Problem 17 ==
  
The two digits in Jack's age are the same as the digits in Bill's age, but in reverse order. In �five years Jack will be twice as old as Bill will be then. What is the difference in their current ages?
+
The two digits in Jack's age are the same as the digits in Bill's age, but in reverse order. In five years Jack will be twice as old as Bill will be then. What is the difference in their current ages?
  
 
<math> \mathrm{(A) \ } 9 \qquad \mathrm{(B) \ } 18 \qquad \mathrm{(C) \ } 27 \qquad \mathrm{(D) \ } 36\qquad \mathrm{(E) \ } 45 </math>
 
<math> \mathrm{(A) \ } 9 \qquad \mathrm{(B) \ } 18 \qquad \mathrm{(C) \ } 27 \qquad \mathrm{(D) \ } 36\qquad \mathrm{(E) \ } 45 </math>
Line 132: Line 161:
  
 
== Problem 18 ==
 
== Problem 18 ==
 +
 +
In the right triangle <math>\triangle ACE</math>, we have <math>AC=12</math>, <math>CE=16</math>, and <math>EA=20</math>. Points <math>B</math>, <math>D</math>, and <math>F</math> are located on <math>AC</math>, <math>CE</math>, and <math>EA</math>, respectively, so that <math>AB=3</math>, <math>CD=4</math>, and <math>EF=5</math>. What is the ratio of the area of <math>\triangle DBF</math> to that of <math>\triangle ACE</math>?
 +
 +
<asy>
 +
unitsize(0.5cm);
 +
defaultpen(0.8);
 +
pair C=(0,0), A=(0,12), E=(20,0);
 +
draw(A--C--E--cycle);
 +
pair B=A + 3*(C-A)/length(C-A);
 +
pair D=C + 4*(E-C)/length(E-C);
 +
pair F=E + 5*(A-E)/length(A-E);
 +
draw(B--D--F--cycle);
 +
label("$A$",A,N);
 +
label("$B$",B,W);
 +
label("$C$",C,SW);
 +
label("$D$",D,S);
 +
label("$E$",E,SE);
 +
label("$F$",F,NE);
 +
label("$3$",A--B,W);
 +
label("$9$",C--B,W);
 +
label("$4$",C--D,S);
 +
label("$12$",D--E,S);
 +
label("$5$",E--F,NE);
 +
label("$15$",F--A,NE);
 +
</asy>
 +
 +
<math> \mathrm{(A) \ } \frac{1}{4} \qquad \mathrm{(B) \ } \frac{9}{25} \qquad \mathrm{(C) \ } \frac{3}{8} \qquad \mathrm{(D) \ } \frac{11}{25} \qquad \mathrm{(E) \ } \frac{7}{16} </math>
  
 
[[2004 AMC 10B Problems/Problem 18|Solution]]
 
[[2004 AMC 10B Problems/Problem 18|Solution]]
Line 137: Line 193:
 
== Problem 19 ==
 
== Problem 19 ==
  
In the sequence <math>2001</math>, <math>2002</math>, <math>2003</math>, <math>\ldots</math> , each term after the third is found by subtracting the previous term from the sum of the two terms that precede that term. For example, the fourth term is <math>2001 + 2002 + 2003 = 2000</math>. What is the
+
In the sequence <math>2001</math>, <math>2002</math>, <math>2003</math>, <math>\ldots</math> , each term after the third is found by subtracting the previous term from the sum of the two terms that precede that term. For example, the fourth term is <math>2001 + 2002 - 2003 = 2000</math>. What is the
 
<math>2004^\textrm{th}</math> term in this sequence?
 
<math>2004^\textrm{th}</math> term in this sequence?
  
Line 145: Line 201:
  
 
== Problem 20 ==
 
== Problem 20 ==
 +
 +
In <math>\triangle ABC</math> points <math>D</math> and <math>E</math> lie on <math>BC</math> and <math>AC</math>, respectively. If <math>AD</math> and <math>BE</math> intersect at <math>T</math> so that <math>\frac{AT}{DT}=3</math> and <math>\frac{BT}{ET}=4</math>, what is <math>\frac{CD}{BD}</math>?
 +
 +
<asy>
 +
unitsize(1.5 cm);
 +
 +
pair A, B, C, D, E, F, T;
 +
 +
A = (0,0);
 +
B = (3,3);
 +
C = (4.5,0);
 +
D = (2*C + B)/3;
 +
E = (5*C + 2*A)/7;
 +
T = extension(A,D,B,E);
 +
F = extension(D, D + A - C, B, E);
 +
 +
draw(A--B--C--cycle);
 +
draw(A--D);
 +
draw(B--E);
 +
 +
 +
label("$A$", A, SW);
 +
label("$B$", B, N);
 +
label("$C$", C, SE);
 +
label("$D$", D, NE);
 +
label("$E$", E, S);
 +
label("$T$", T, SE);
 +
 +
</asy>
 +
 +
<math> \mathrm{(A) \ } \frac{1}{8} \qquad \mathrm{(B) \ } \frac{2}{9} \qquad \mathrm{(C) \ } \frac{3}{10} \qquad \mathrm{(D) \ } \frac{4}{11} \qquad \mathrm{(E) \ } \frac{5}{12} </math>
  
 
[[2004 AMC 10B Problems/Problem 20|Solution]]
 
[[2004 AMC 10B Problems/Problem 20|Solution]]
Line 158: Line 245:
 
== Problem 22 ==
 
== Problem 22 ==
  
A triangle with sides of 5, 12, and 13 has both an inscribed and a circumscribed circle. What is the distance between the centers of those circles?
+
A triangle with sides of length <math>5, 12,</math> and <math>13</math> has both an inscribed and a circumscribed circle. What is the distance between the centers of those circles?
  
 
<math> \mathrm{(A) \ } \frac{3\sqrt{5}}{2} \qquad \mathrm{(B) \ } \frac{7}{2} \qquad \mathrm{(C) \ } \sqrt{15} \qquad \mathrm{(D) \ } \frac{\sqrt{65}}{2} \qquad \mathrm{(E) \ } \frac{9}{2} </math>
 
<math> \mathrm{(A) \ } \frac{3\sqrt{5}}{2} \qquad \mathrm{(B) \ } \frac{7}{2} \qquad \mathrm{(C) \ } \sqrt{15} \qquad \mathrm{(D) \ } \frac{\sqrt{65}}{2} \qquad \mathrm{(E) \ } \frac{9}{2} </math>
Line 166: Line 253:
 
== Problem 23 ==
 
== Problem 23 ==
  
Each face of a cube is painted either red or blue, each with probability 1/2. The color of each face is determined independently. What is the probability that the painted cube can be placed on a horizontal surface so that the four vertical faces are all the same color?
+
Each face of a cube is painted either red or blue, each with probability <math>1/2</math>. The color of each face is determined independently. What is the probability that the painted cube can be placed on a horizontal surface so that the four vertical faces are all the same color?
  
 
<math> \mathrm{(A) \ } \frac{1}{4} \qquad \mathrm{(B) \ } \frac{5}{16} \qquad \mathrm{(C) \ } \frac{3}{8} \qquad \mathrm{(D) \ } \frac{7}{16} \qquad \mathrm{(E) \ } \frac{1}{2} </math>
 
<math> \mathrm{(A) \ } \frac{1}{4} \qquad \mathrm{(B) \ } \frac{5}{16} \qquad \mathrm{(C) \ } \frac{3}{8} \qquad \mathrm{(D) \ } \frac{7}{16} \qquad \mathrm{(E) \ } \frac{1}{2} </math>
Line 182: Line 269:
 
== Problem 25 ==
 
== Problem 25 ==
  
+
A circle of radius <math>1</math> is internally tangent to two circles of radius <math>2</math> at points <math>A</math> and <math>B</math>, where <math>AB</math> is a diameter of the smaller circle. What is the area of the region, shaded in the picture, that is outside the smaller circle and inside each of the two larger circles?
 +
 
 +
<math>
 +
\mathrm{(A) \ } \frac{5}{3} \pi - 3\sqrt 2
 +
\qquad
 +
\mathrm{(B) \ } \frac{5}{3} \pi - 2\sqrt 3
 +
\qquad
 +
\mathrm{(C) \ } \frac{8}{3} \pi - 3\sqrt 3
 +
\qquad
 +
\mathrm{(D) \ } \frac{8}{3} \pi - 3\sqrt 2
 +
\qquad
 +
\mathrm{(E) \ } \frac{8}{3} \pi - 2\sqrt 3
 +
</math>
 +
 
 +
 
 +
<asy>
 +
unitsize(1cm);
 +
defaultpen(0.8);
 +
 
 +
pair O=(0,0), A=(0,1), B=(0,-1);
 +
path bigc1 = Circle(A,2), bigc2 = Circle(B,2), smallc = Circle(O,1);
 +
 
 +
pair[] P = intersectionpoints(bigc1, bigc2);
 +
filldraw( arc(A,P[0],P[1])--arc(B,P[1],P[0])--cycle, lightgray, black );
 +
draw(bigc1);
 +
draw(bigc2);
 +
unfill(smallc);
 +
draw(smallc);
 +
 
 +
dot(O); dot(A); dot(B); label("$A$",A,N); label("$B$",B,S);
 +
draw( O--dir(30) );
 +
draw( A--(A+2*dir(30)) );
 +
draw( B--(B+2*dir(210)) );
 +
 
 +
label("$1$", O--dir(30), N );
 +
label("$2$", A--(A+2*dir(30)), N );
 +
label("$2$", B--(B+2*dir(210)), S );
 +
 
 +
</asy>
 +
 
 
[[2004 AMC 10B Problems/Problem 25|Solution]]
 
[[2004 AMC 10B Problems/Problem 25|Solution]]
  
 
== See also ==
 
== See also ==
 
+
{{AMC10 box|year=2004|ab=B|before=[[2004 AMC 10A Problems]]|after=[[2005 AMC 10A Problems]]}}
 
* [[AMC 10]]
 
* [[AMC 10]]
 
* [[AMC 10 Problems and Solutions]]
 
* [[AMC 10 Problems and Solutions]]
Line 192: Line 318:
 
* [http://www.artofproblemsolving.com/Community/AoPS_Y_MJ_Transcripts.php?mj_id=28 2004 AMC B Math Jam Transcript]
 
* [http://www.artofproblemsolving.com/Community/AoPS_Y_MJ_Transcripts.php?mj_id=28 2004 AMC B Math Jam Transcript]
 
* [[Mathematics competition resources]]
 
* [[Mathematics competition resources]]
 +
{{MAA Notice}}

Latest revision as of 14:29, 9 June 2024

2004 AMC 10B (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the SAT if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

Each row of the Misty Moon Amphitheater has $33$ seats. Rows $12$ through $22$ are reserved for a youth club. How many seats are reserved for this club?

$\mathrm{(A) \ } 297 \qquad \mathrm{(B) \ } 330\qquad \mathrm{(C) \ } 363\qquad \mathrm{(D) \ } 396\qquad \mathrm{(E) \ } 726$

Solution

Problem 2

How many two-digit positive integers have at least one $7$ as a digit?

$\mathrm{(A) \ } 10 \qquad \mathrm{(B) \ } 18\qquad \mathrm{(C) \ } 19 \qquad \mathrm{(D) \ } 20\qquad \mathrm{(E) \ } 30$

Solution

Problem 3

At each basketball practice last week, Jenny made twice as many free throws as she made at the previous practice. At her fifth practice she made $48$ free throws. How many free throws did she make at the first practice?

$\mathrm{(A) \ } 3 \qquad \mathrm{(B) \ } 6 \qquad \mathrm{(C) \ } 9 \qquad \mathrm{(D) \ } 12\qquad \mathrm{(E) \ } 15$

Solution

Problem 4

A standard six-sided die is rolled, and $P$ is the product of the five numbers that are visible. What is the largest number that is certain to divide $P$?

$\mathrm{(A) \ } 6 \qquad \mathrm{(B) \ } 12 \qquad \mathrm{(C) \ } 24 \qquad \mathrm{(D) \ } 144\qquad \mathrm{(E) \ } 720$

Solution

Problem 5

In the expression $c\cdot a^b-d$, the values of $a$, $b$, $c$, and $d$ are $0$, $1$, $2$, and $3$, although not necessarily in that order. What is the maximum possible value of the result?

$\mathrm{(A) \ } 5 \qquad \mathrm{(B) \ } 6\qquad \mathrm{(C) \ } 8 \qquad \mathrm{(D) \ } 9\qquad \mathrm{(E) \ } 10$

Solution

Problem 6

Which of the following numbers is a perfect square?

$\mathrm{(A) \ } 98! \cdot 99! \qquad \mathrm{(B) \ } 98! \cdot 100! \qquad \mathrm{(C) \ } 99! \cdot 100! \qquad \mathrm{(D) \ } 99! \cdot 101! \qquad \mathrm{(E) \ } 100! \cdot 101!$

Solution

Problem 7

On a trip from the United States to Canada, Isabella took $d$ U.S. dollars. At the border she exchanged them all, receiving $10$ Canadian dollars for every $7$ U.S. dollars. After spending $60$ Canadian dollars, she had $d$ Canadian dollars left. What is the sum of the digits of $d$?

$\mathrm{(A) \ } 5 \qquad \mathrm{(B) \ } 6\qquad \mathrm{(C) \ } 7\qquad \mathrm{(D) \ } 8\qquad \mathrm{(E) \ } 9$

Solution

Problem 8

Minneapolis-St. Paul International Airport is $8$ miles southwest of downtown St. Paul and $10$ miles southeast of downtown Minneapolis. Which of the following is closest to the number of miles between downtown St. Paul and downtown Minneapolis?

$\mathrm{(A) \ } 13 \qquad \mathrm{(B) \ } 14\qquad \mathrm{(C) \ } 15\qquad \mathrm{(D) \ } 16\qquad \mathrm{(E) \ } 17$

Solution

Problem 9

A square has sides of length $10$, and a circle centered at one of its vertices has radius $10$. What is the area of the union of the regions enclosed by the square and the circle?

$\mathrm{(A) \ } 200+25\pi \qquad \mathrm{(B) \ } 100+75\pi \qquad \mathrm{(C) \ } 75+100\pi \qquad \mathrm{(D) \ } 100+100\pi \qquad \mathrm{(E) \ } 100+125\pi$

Solution

Problem 10

A grocer makes a display of cans in which the top row has one can and each lower row has two more cans than the row above it. If the display contains $100$ cans, how many rows does it contain?

$\mathrm{(A) \ } 5 \qquad \mathrm{(B) \ } 8 \qquad \mathrm{(C) \ } 9 \qquad \mathrm{(D) \ } 10\qquad \mathrm{(E) \ } 11$

Solution

Problem 11

Two eight-sided dice each have faces numbered $1$ through $8$. When the dice are rolled, each face has an equal probability of appearing on the top. What is the probability that the product of the two top numbers is greater than their sum?

$\mathrm{(A) \ } \frac{1}{2} \qquad \mathrm{(B) \ } \frac{47}{64} \qquad \mathrm{(C) \ } \frac{3}{4} \qquad \mathrm{(D) \ } \frac{55}{64} \qquad \mathrm{(E) \ } \frac{7}{8}$

Solution

Problem 12

An annulus is the region between two concentric circles. The concentric circles in the figure have radii $b$ and $c$, with $b>c$. Let $OX$ be a radius of the larger circle, let $XZ$ be tangent to the smaller circle at $Z$, and let $OY$ be the radius of the larger circle that contains $Z$. Let $a=XZ$, $d=YZ$, and $e=XY$. What is the area of the annulus?

[asy] unitsize(1.5cm); defaultpen(0.8); real r1=1.5, r2=2.5; pair O=(0,0); path inner=Circle(O,r1), outer=Circle(O,r2); pair Y=(0,r2), Z=(0,r1), X=intersectionpoint( Z--(Z+(10,0)), outer ); filldraw(outer,lightgray,black); filldraw(inner,white,black); draw(X--O--Y); draw(Y--X--Z); label("$O$",O,SW); label("$X$",X,E); label("$Y$",Y,N); label("$Z$",Z,SW); label("$a$",X--Z,N); label("$b$",0.25*X,SE); label("$c$",O--Z,E); label("$d$",Y--Z,W); label("$e$",Y*0.65 + X*0.35,SW); defaultpen(0.5); dot(O); dot(X); dot(Z); dot(Y); [/asy]

$\mathrm{(A) \ } \pi a^2 \qquad \mathrm{(B) \ } \pi b^2 \qquad \mathrm{(C) \ } \pi c^2 \qquad \mathrm{(D) \ } \pi d^2 \qquad \mathrm{(E) \ } \pi e^2$

Solution

Problem 13

In the United States, coins have the following thicknesses: penny, $1.55$ mm; nickel, $1.95$ mm; dime, $1.35$ mm; quarter, $1.75$ mm. If a stack of these coins is exactly $14$ mm high, how many coins are in the stack?

$\mathrm{(A) \ } 7 \qquad \mathrm{(B) \ } 8 \qquad \mathrm{(C) \ } 9 \qquad \mathrm{(D) \ } 10 \qquad \mathrm{(E) \ } 11$

Solution

Problem 14

A bag initially contains red marbles and blue marbles only, with more blue than red. Red marbles are added to the bag until only $\frac{1}{3}$ of the marbles in the bag are blue. Then yellow marbles are added to the bag until only $\frac{1}{5}$ of the marbles in the bag are blue. Finally, the number of blue marbles in the bag is doubled. What fraction of the marbles now in the bag are blue?

$\mathrm{(A) \ } \frac{1}{5} \qquad \mathrm{(B) \ } \frac{1}{4} \qquad \mathrm{(C) \ } \frac{1}{3} \qquad \mathrm{(D) \ } \frac{2}{5} \qquad \mathrm{(E) \ } \frac{1}{2}$

Solution

Problem 15

Patty has $20$ coins consisting of nickels and dimes. If her nickels were dimes and her dimes were nickels, she would have $70$ cents more. How much are her coins worth?

$\textbf{(A)}\ \textdollar 1.15\qquad\textbf{(B)}\ \textdollar 1.20\qquad\textbf{(C)}\ \textdollar 1.25\qquad\textbf{(D)}\ \textdollar 1.30\qquad\textbf{(E)}\ \textdollar 1.35$

Solution

Problem 16

Three circles of radius $1$ are externally tangent to each other and internally tangent to a larger circle. What is the radius of the large circle?

$\mathrm{(A) \ } \frac{2 + \sqrt{6}}{3} \qquad \mathrm{(B) \ } 2 \qquad \mathrm{(C) \ } \frac{2 + 3\sqrt{2}}{2} \qquad \mathrm{(D) \ } \frac{3 + 2\sqrt{3}}{3} \qquad \mathrm{(E) \ } \frac{3 + \sqrt{3}}{2}$

Solution

Problem 17

The two digits in Jack's age are the same as the digits in Bill's age, but in reverse order. In five years Jack will be twice as old as Bill will be then. What is the difference in their current ages?

$\mathrm{(A) \ } 9 \qquad \mathrm{(B) \ } 18 \qquad \mathrm{(C) \ } 27 \qquad \mathrm{(D) \ } 36\qquad \mathrm{(E) \ } 45$

Solution

Problem 18

In the right triangle $\triangle ACE$, we have $AC=12$, $CE=16$, and $EA=20$. Points $B$, $D$, and $F$ are located on $AC$, $CE$, and $EA$, respectively, so that $AB=3$, $CD=4$, and $EF=5$. What is the ratio of the area of $\triangle DBF$ to that of $\triangle ACE$?

[asy] unitsize(0.5cm); defaultpen(0.8); pair C=(0,0), A=(0,12), E=(20,0); draw(A--C--E--cycle); pair B=A + 3*(C-A)/length(C-A); pair D=C + 4*(E-C)/length(E-C); pair F=E + 5*(A-E)/length(A-E); draw(B--D--F--cycle); label("$A$",A,N); label("$B$",B,W); label("$C$",C,SW); label("$D$",D,S); label("$E$",E,SE); label("$F$",F,NE); label("$3$",A--B,W); label("$9$",C--B,W); label("$4$",C--D,S); label("$12$",D--E,S); label("$5$",E--F,NE); label("$15$",F--A,NE); [/asy]

$\mathrm{(A) \ } \frac{1}{4} \qquad \mathrm{(B) \ } \frac{9}{25} \qquad \mathrm{(C) \ } \frac{3}{8} \qquad \mathrm{(D) \ } \frac{11}{25} \qquad \mathrm{(E) \ } \frac{7}{16}$

Solution

Problem 19

In the sequence $2001$, $2002$, $2003$, $\ldots$ , each term after the third is found by subtracting the previous term from the sum of the two terms that precede that term. For example, the fourth term is $2001 + 2002 - 2003 = 2000$. What is the $2004^\textrm{th}$ term in this sequence?

$\mathrm{(A) \ } -2004 \qquad \mathrm{(B) \ } -2 \qquad \mathrm{(C) \ } 0 \qquad \mathrm{(D) \ } 4003 \qquad \mathrm{(E) \ } 6007$

Solution

Problem 20

In $\triangle ABC$ points $D$ and $E$ lie on $BC$ and $AC$, respectively. If $AD$ and $BE$ intersect at $T$ so that $\frac{AT}{DT}=3$ and $\frac{BT}{ET}=4$, what is $\frac{CD}{BD}$?

[asy] unitsize(1.5 cm);  pair A, B, C, D, E, F, T;  A = (0,0); B = (3,3); C = (4.5,0); D = (2*C + B)/3; E = (5*C + 2*A)/7; T = extension(A,D,B,E); F = extension(D, D + A - C, B, E);  draw(A--B--C--cycle); draw(A--D); draw(B--E);   label("$A$", A, SW); label("$B$", B, N); label("$C$", C, SE); label("$D$", D, NE); label("$E$", E, S); label("$T$", T, SE);  [/asy]

$\mathrm{(A) \ } \frac{1}{8} \qquad \mathrm{(B) \ } \frac{2}{9} \qquad \mathrm{(C) \ } \frac{3}{10} \qquad \mathrm{(D) \ } \frac{4}{11} \qquad \mathrm{(E) \ } \frac{5}{12}$

Solution

Problem 21

Let $1$; $4$; $\ldots$ and $9$; $16$; $\ldots$ be two arithmetic progressions. The set $S$ is the union of the first $2004$ terms of each sequence. How many distinct numbers are in $S$?

$\mathrm{(A) \ } 3722 \qquad \mathrm{(B) \ } 3732 \qquad \mathrm{(C) \ } 3914 \qquad \mathrm{(D) \ } 3924 \qquad \mathrm{(E) \ } 4007$

Solution

Problem 22

A triangle with sides of length $5, 12,$ and $13$ has both an inscribed and a circumscribed circle. What is the distance between the centers of those circles?

$\mathrm{(A) \ } \frac{3\sqrt{5}}{2} \qquad \mathrm{(B) \ } \frac{7}{2} \qquad \mathrm{(C) \ } \sqrt{15} \qquad \mathrm{(D) \ } \frac{\sqrt{65}}{2} \qquad \mathrm{(E) \ } \frac{9}{2}$

Solution

Problem 23

Each face of a cube is painted either red or blue, each with probability $1/2$. The color of each face is determined independently. What is the probability that the painted cube can be placed on a horizontal surface so that the four vertical faces are all the same color?

$\mathrm{(A) \ } \frac{1}{4} \qquad \mathrm{(B) \ } \frac{5}{16} \qquad \mathrm{(C) \ } \frac{3}{8} \qquad \mathrm{(D) \ } \frac{7}{16} \qquad \mathrm{(E) \ } \frac{1}{2}$

Solution

Problem 24

In $\bigtriangleup ABC$ we have $AB = 7$, $AC = 8$, and $BC = 9$. Point $D$ is on the circumscribed circle of the triangle so that $AD$ bisects $\angle BAC$. What is the value of $\frac{AD}{CD}$?

$\mathrm{(A) \ } \frac{9}{8} \qquad \mathrm{(B) \ } \frac{5}{3} \qquad \mathrm{(C) \ } 2 \qquad \mathrm{(D) \ } \frac{17}{7} \qquad \mathrm{(E) \ } \frac{5}{2}$

Solution

Problem 25

A circle of radius $1$ is internally tangent to two circles of radius $2$ at points $A$ and $B$, where $AB$ is a diameter of the smaller circle. What is the area of the region, shaded in the picture, that is outside the smaller circle and inside each of the two larger circles?

$\mathrm{(A) \ } \frac{5}{3} \pi - 3\sqrt 2 \qquad  \mathrm{(B) \ } \frac{5}{3} \pi - 2\sqrt 3 \qquad  \mathrm{(C) \ } \frac{8}{3} \pi - 3\sqrt 3 \qquad  \mathrm{(D) \ } \frac{8}{3} \pi - 3\sqrt 2 \qquad  \mathrm{(E) \ } \frac{8}{3} \pi - 2\sqrt 3$


[asy] unitsize(1cm); defaultpen(0.8);  pair O=(0,0), A=(0,1), B=(0,-1); path bigc1 = Circle(A,2), bigc2 = Circle(B,2), smallc = Circle(O,1);  pair[] P = intersectionpoints(bigc1, bigc2); filldraw( arc(A,P[0],P[1])--arc(B,P[1],P[0])--cycle, lightgray, black ); draw(bigc1); draw(bigc2); unfill(smallc); draw(smallc);  dot(O); dot(A); dot(B); label("$A$",A,N); label("$B$",B,S); draw( O--dir(30) ); draw( A--(A+2*dir(30)) ); draw( B--(B+2*dir(210)) );  label("$1$", O--dir(30), N ); label("$2$", A--(A+2*dir(30)), N ); label("$2$", B--(B+2*dir(210)), S );  [/asy]

Solution

See also

2004 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
2004 AMC 10A Problems
Followed by
2005 AMC 10A Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png