Difference between revisions of "2002 AMC 10B Problems/Problem 1"

(bpx)
 
(12 intermediate revisions by 5 users not shown)
Line 3: Line 3:
 
The ratio <math>\frac{2^{2001}\cdot3^{2003}}{6^{2002}}</math> is:
 
The ratio <math>\frac{2^{2001}\cdot3^{2003}}{6^{2002}}</math> is:
  
<math> \mathrm{(A) \ } 1/6\qquad \mathrm{(B) \ } 1/3\qquad \mathrm{(C) \ } 1/2\qquad \mathrm{(D) \ } 2/3\qquad \mathrm{(E) \ } 3/2 </math>
+
<math> \mathrm{(A) \ } 1/6\qquad \mathrm{(B) \ } 1/3\qquad \mathrm{(C) \ } 1/2\qquad \mathrm{(D) \ } 2/3\qquad \mathrm{(E) \ } 3/2\qquad</math>
  
== Solution ==
+
== Solution 1==
  
 
<math>\frac{2^{2001}\cdot3^{2003}}{6^{2002}}=\frac{6^{2001}\cdot 3^2}{6^{2002}}=\frac{9}{6}=\frac{3}{2}</math> or <math>\mathrm{ (E) \ }</math>
 
<math>\frac{2^{2001}\cdot3^{2003}}{6^{2002}}=\frac{6^{2001}\cdot 3^2}{6^{2002}}=\frac{9}{6}=\frac{3}{2}</math> or <math>\mathrm{ (E) \ }</math>
 +
 +
 +
== Solution 2==
 +
<math>\frac{2^{2001}\cdot3^{2003}}{6^{2002}}=\frac{2^{2001}\cdot 2\cdot 3^{2002}\cdot 3}{6^{2002}\cdot 2}=\frac{2^{2002} \cdot 3^{2002} \cdot 3}{6^{2002}\cdot 2}=\frac{6^{2002}\cdot 3}{6^{2002}\cdot 2}=\frac{3}{2}</math> or <math>\mathrm{ (E) \ }</math>
 +
~by mathwiz0
 +
 +
== Solution 3 ==
 +
<math>\frac{2^{2001}\cdot3^{2003}}{6^{2002}}=\frac{2^{2001}\cdot3^{2003}}{2^{2002}\cdot3^{2002}}=\frac{3}{2}</math>
 +
 +
==Video Solution by Daily Dose of Math==
 +
 +
https://youtu.be/d9tByrEEHuE
 +
 +
~Thesmartgreekmathdude
  
 
==See Also==
 
==See Also==
Line 13: Line 27:
  
 
[[Category:Introductory Number Theory Problems]]
 
[[Category:Introductory Number Theory Problems]]
 +
{{MAA Notice}}

Latest revision as of 22:22, 24 October 2024

Problem

The ratio $\frac{2^{2001}\cdot3^{2003}}{6^{2002}}$ is:

$\mathrm{(A) \ } 1/6\qquad \mathrm{(B) \ } 1/3\qquad \mathrm{(C) \ } 1/2\qquad \mathrm{(D) \ } 2/3\qquad \mathrm{(E) \ } 3/2\qquad$

Solution 1

$\frac{2^{2001}\cdot3^{2003}}{6^{2002}}=\frac{6^{2001}\cdot 3^2}{6^{2002}}=\frac{9}{6}=\frac{3}{2}$ or $\mathrm{ (E) \ }$


Solution 2

$\frac{2^{2001}\cdot3^{2003}}{6^{2002}}=\frac{2^{2001}\cdot 2\cdot 3^{2002}\cdot 3}{6^{2002}\cdot 2}=\frac{2^{2002} \cdot 3^{2002} \cdot 3}{6^{2002}\cdot 2}=\frac{6^{2002}\cdot 3}{6^{2002}\cdot 2}=\frac{3}{2}$ or $\mathrm{ (E) \ }$ ~by mathwiz0

Solution 3

$\frac{2^{2001}\cdot3^{2003}}{6^{2002}}=\frac{2^{2001}\cdot3^{2003}}{2^{2002}\cdot3^{2002}}=\frac{3}{2}$

Video Solution by Daily Dose of Math

https://youtu.be/d9tByrEEHuE

~Thesmartgreekmathdude

See Also

2002 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png