Difference between revisions of "2002 AMC 10B Problems/Problem 3"

(created page)
 
(Redirected page to 2002 AMC 12B Problems/Problem 1)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
== Problem ==
+
#REDIRECT[[2002 AMC 12B Problems/Problem 1]]
 
 
The arithmetic mean of the nine numbers in the set <math>\{9,99,999,9999,...,999999999\}</math> is a <math>9</math>-digit number <math>M</math>, all of whose digits are distinct. The number <math>M</math> does not contain the digit
 
 
 
<math> \mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 2\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 6\qquad \mathrm{(E) \ } 8 </math>
 
 
 
== Solution ==
 
 
 
We wish to find <math>\frac{9+99+\cdots +999999999}{9}</math>, or <math>\frac{9(1+11+111+\cdots +111111111)}{9}=123456789</math>. This does not have the digit 0, so <math>\mathrm{ (A) \ }</math>
 

Latest revision as of 16:14, 28 July 2011