|
|
(2 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | ==Problem==
| + | #redirect [[2002 AMC 12A Problems/Problem 9]] |
− | Jamal wants to save 30 files onto disks, each with 1.44 MB space. 3 of the files take up 0.8 MB, 12 of the files take up 0.7 MB, and the rest take up 0.4 MB. It is not possible to split a file onto 2 different disks. What is the smallest number of disks needed to store all 30 files?
| |
− | | |
− | <math>\text{(A)}\ 12 \qquad \text{(B)}\ 13 \qquad \text{(C)}\ 14 \qquad \text{(D)}\ 15 \qquad \text{(E)} 16</math>
| |
− | | |
− | ==Solution==
| |
− | We can store a 0.4 MB plus a 0.8 MB file on a disk, or 2 0.7s, but not a 0.8 and a 0.7 together. Hence, our answer is <math>\frac{12}{2}+3+4=\boxed{13\Rightarrow\text{(B)}}</math>.
| |
− | | |
− | ==See Also==
| |
− | {{AMC10 box|year=2002|ab=a|num-b=10|num-a=12}}
| |
− | | |
− | [[Category:Intermediate Algebra Problems]] | |