GET READY FOR THE AMC 12 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 12 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2004 AMC 12B Problems"

m (Problem 16)
m
 
(24 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 +
{{AMC12 Problems|year=2004|ab=B}}
 
== Problem 1 ==
 
== Problem 1 ==
At each basketball practice last week, Jenny made twice as many free throws as she made at the previous practice. At her fifth practice she made 48 free throws. How many free throws did she make at the first practice?  
+
At each basketball practice last week, Jenny made twice as many free throws as she made at the previous practice. At her fifth practice she made 48 free throws. How many free throws did she make at the first practice?  
  
 
<math>(\mathrm {A}) 3\qquad (\mathrm {B}) 6 \qquad (\mathrm {C}) 9 \qquad (\mathrm {D}) 12 \qquad (\mathrm {E}) 15</math>
 
<math>(\mathrm {A}) 3\qquad (\mathrm {B}) 6 \qquad (\mathrm {C}) 9 \qquad (\mathrm {D}) 12 \qquad (\mathrm {E}) 15</math>
Line 23: Line 24:
 
An integer <math>x</math>, with <math>10\leq x\leq 99</math>, is to be chosen. If all choices are equally likely, what is the probability that at least one digit of <math>x</math> is a 7?
 
An integer <math>x</math>, with <math>10\leq x\leq 99</math>, is to be chosen. If all choices are equally likely, what is the probability that at least one digit of <math>x</math> is a 7?
  
<math>(\mathrm {A}) \dfrac{1}{9} \qquad (\mathrm {B}) \dfrac{1}{5} \qquad (\mathrm {C}) dfrac{19}{90} \qquad (\mathrm {D}) \dfrac{2}{9} \qquad (\mathrm {E}) \dfrac{1}{3}</math>
+
<math>(\mathrm {A}) \dfrac{1}{9} \qquad (\mathrm {B}) \dfrac{1}{5} \qquad (\mathrm {C}) \dfrac{19}{90} \qquad (\mathrm {D}) \dfrac{2}{9} \qquad (\mathrm {E}) \dfrac{1}{3}</math>
  
 
[[2004 AMC 12B Problems/Problem 4|Solution]]
 
[[2004 AMC 12B Problems/Problem 4|Solution]]
Line 35: Line 36:
  
 
== Problem 6 ==
 
== Problem 6 ==
Minneapolis-St. Paul International Airport is 8 miles southwest of downtown St. Paul and 10 miles southeast of downtown Minneapolis. Which of the follow- ing is closest to the number of miles between downtown St. Paul and downtown Minneapolis?  
+
Minneapolis-St. Paul International Airport is 8 miles southwest of downtown St. Paul and 10 miles southeast of downtown Minneapolis. Which of the following is closest to the number of miles between downtown St. Paul and downtown Minneapolis?  
  
 
<math>(\mathrm {A}) 13\qquad (\mathrm {B}) 14 \qquad (\mathrm {C}) 15 \qquad (\mathrm {D}) 16 \qquad (\mathrm {E}) 17</math>
 
<math>(\mathrm {A}) 13\qquad (\mathrm {B}) 14 \qquad (\mathrm {C}) 15 \qquad (\mathrm {D}) 16 \qquad (\mathrm {E}) 17</math>
Line 44: Line 45:
 
A square has sides of length 10, and a circle centered at one of its vertices has radius 10. What is the area of the union of the regions enclosed by the square and the circle?
 
A square has sides of length 10, and a circle centered at one of its vertices has radius 10. What is the area of the union of the regions enclosed by the square and the circle?
  
<math>(\mathrm {A}) 200+25\pi \qquad (\mathrm {B}) 100+75\pi \qquad (\mathrm {C}) 75+100\pi \qquad (\mathrm {D}) 100+100\pi \qquad (\mathrm {E}) 100+125\pi</math>
+
<math>(\mathrm {A}) 200+25\pi \quad (\mathrm {B}) 100+75\pi \quad (\mathrm {C}) 75+100\pi \quad (\mathrm {D}) 100+100\pi \quad (\mathrm {E}) 100+125\pi</math>
  
 
[[2004 AMC 12B Problems/Problem 7|Solution]]
 
[[2004 AMC 12B Problems/Problem 7|Solution]]
Line 56: Line 57:
  
 
== Problem 9 ==
 
== Problem 9 ==
 +
 +
The point <math>(-3,2)</math> is rotated <math>90^\circ</math> clockwise around the origin to point <math>B</math>. Point <math>B</math> is then reflected over the line <math>x=y</math> to point <math>C</math>. What are the coordinates of <math>C</math>?
 +
 +
<math>
 +
\mathrm{(A)}\ (-3,-2)
 +
\qquad
 +
\mathrm{(B)}\ (-2,-3)
 +
\qquad
 +
\mathrm{(C)}\ (2,-3)
 +
\qquad
 +
\mathrm{(D)}\ (2,3)
 +
\qquad
 +
\mathrm{(E)}\ (3,2)
 +
</math>
  
 
[[2004 AMC 12B Problems/Problem 9|Solution]]
 
[[2004 AMC 12B Problems/Problem 9|Solution]]
  
 
== Problem 10 ==
 
== Problem 10 ==
 +
 +
An annulus is the region between two concentric circles. The concentric circles in the figure have radii <math>b</math> and <math>c</math>, with <math>b>c</math>. Let <math>OX</math> be a radius of the larger circle, let <math>XZ</math> be tangent to the smaller circle at <math>Z</math>, and let <math>OY</math> be the radius of the larger circle that contains <math>Z</math>. Let <math>a=XZ</math>, <math>d=YZ</math>, and <math>e=XY</math>. What is the area of the annulus?
 +
 +
<asy>
 +
import graph;
 +
unitsize(1.5cm);
 +
defaultpen(0.8);
 +
real r1=1.5, r2=2.5;
 +
pair O=(0,0);
 +
path inner=Circle(O,r1), outer=Circle(O,r2);
 +
pair Y=(0,r2), Z=(0,r1), X=intersectionpoint( Z--(Z+(10,0)), outer );
 +
filldraw(outer,lightgray,black);
 +
filldraw(inner,white,black);
 +
draw(X--O--Y); draw(Y--X--Z);
 +
label("$O$",O,SW);
 +
label("$X$",X,E);
 +
label("$Y$",Y,N);
 +
label("$Z$",Z,SW);
 +
label("$a$",X--Z,N);
 +
label("$b$",0.25*X,SE);
 +
label("$c$",O--Z,E);
 +
label("$d$",Y--Z,W);
 +
label("$e$",Y*0.65 + X*0.35,SW);
 +
defaultpen(0.5);
 +
dot(O); dot(X); dot(Z); dot(Y);
 +
</asy>
 +
 +
<math> \mathrm{(A) \ } \pi a^2 \qquad \mathrm{(B) \ } \pi b^2 \qquad \mathrm{(C) \ } \pi c^2 \qquad \mathrm{(D) \ } \pi d^2 \qquad \mathrm{(E) \ } \pi e^2 </math>
  
 
[[2004 AMC 12B Problems/Problem 10|Solution]]
 
[[2004 AMC 12B Problems/Problem 10|Solution]]
  
 
== Problem 11 ==
 
== Problem 11 ==
 +
 +
All the students in an algebra class took a <math>100</math>-point test. Five students scored <math>100</math>, each student scored at least <math>60</math>, and the mean score was <math>76</math>. What is the smallest possible number of students in the class?
 +
 +
<math>
 +
\mathrm{(A)}\ 10
 +
\qquad
 +
\mathrm{(B)}\ 11
 +
\qquad
 +
\mathrm{(C)}\ 12
 +
\qquad
 +
\mathrm{(D)}\ 13
 +
\qquad
 +
\mathrm{(E)}\ 14
 +
</math>
  
 
[[2004 AMC 12B Problems/Problem 11|Solution]]
 
[[2004 AMC 12B Problems/Problem 11|Solution]]
  
 
== Problem 12 ==
 
== Problem 12 ==
 +
 +
In the sequence <math>2001</math>, <math>2002</math>, <math>2003</math>, <math>\ldots</math> , each term after the third is found by subtracting the previous term from the sum of the two terms that precede that term. For example, the fourth term is <math>2001 + 2002 - 2003 = 2000</math>. What is the
 +
<math>2004^\textrm{th}</math> term in this sequence?
 +
 +
<math> \mathrm{(A) \ } -2004 \qquad \mathrm{(B) \ } -2 \qquad \mathrm{(C) \ } 0 \qquad \mathrm{(D) \ } 4003 \qquad \mathrm{(E) \ } 6007 </math>
  
 
[[2004 AMC 12B Problems/Problem 12|Solution]]
 
[[2004 AMC 12B Problems/Problem 12|Solution]]
Line 85: Line 147:
  
 
== Problem 14 ==
 
== Problem 14 ==
 +
 +
In <math>\triangle ABC</math>, <math>AB=13</math>, <math>AC=5</math>, and <math>BC=12</math>. Points <math>M</math> and <math>N</math> lie on <math>AC</math> and <math>BC</math>, respectively, with <math>CM=CN=4</math>. Points <math>J</math> and <math>K</math> are on <math>AB</math> so that <math>MJ</math> and <math>NK</math> are perpendicular to <math>AB</math>. What is the area of pentagon <math>CMJKN</math>?
 +
 +
<asy>
 +
unitsize(0.5cm);
 +
defaultpen(0.8);
 +
pair C=(0,0), A=(0,5), B=(12,0), M=(0,4), N=(4,0);
 +
pair J=intersectionpoint(A--B, M--(M+rotate(90)*(B-A)) );
 +
pair K=intersectionpoint(A--B, N--(N+rotate(90)*(B-A)) );
 +
draw( A--B--C--cycle );
 +
draw( M--J );
 +
draw( N--K );
 +
label("$A$",A,NW);
 +
label("$B$",B,SE);
 +
label("$C$",C,SW);
 +
label("$M$",M,SW);
 +
label("$N$",N,S);
 +
label("$J$",J,NE);
 +
label("$K$",K,NE);
 +
</asy>
 +
 +
<math>
 +
\mathrm{(A)}\ 15
 +
\qquad
 +
\mathrm{(B)}\ \frac{81}{5}
 +
\qquad
 +
\mathrm{(C)}\ \frac{205}{12}
 +
\qquad
 +
\mathrm{(D)}\ \frac{240}{13}
 +
\qquad
 +
\mathrm{(E)}\ 20
 +
</math>
  
 
[[2004 AMC 12B Problems/Problem 14|Solution]]
 
[[2004 AMC 12B Problems/Problem 14|Solution]]
  
 
== Problem 15 ==
 
== Problem 15 ==
 +
 +
The two digits in Jack's age are the same as the digits in Bill's age, but in reverse order. In five years Jack will be twice as old as Bill will be then. What is the difference in their current ages?
 +
 +
<math> \mathrm{(A) \ } 9 \qquad \mathrm{(B) \ } 18 \qquad \mathrm{(C) \ } 27 \qquad \mathrm{(D) \ } 36\qquad \mathrm{(E) \ } 45 </math>
  
 
[[2004 AMC 12B Problems/Problem 15|Solution]]
 
[[2004 AMC 12B Problems/Problem 15|Solution]]
Line 106: Line 204:
  
 
== Problem 17 ==
 
== Problem 17 ==
 +
 +
For some real numbers <math>a</math> and <math>b</math>, the [[equation]]
 +
<cmath>8x^3 + 4ax^2 + 2bx + a = 0</cmath>
 +
has three distinct positive roots. If the sum of the base-<math>2</math> [[logarithm]]s of the roots is <math>5</math>, what is the value of <math>a</math>?
 +
 +
<math>\mathrm{(A)}\ -256
 +
\qquad\mathrm{(B)}\ -64
 +
\qquad\mathrm{(C)}\ -8
 +
\qquad\mathrm{(D)}\ 64
 +
\qquad\mathrm{(E)}\ 256</math>
 +
  
 
[[2004 AMC 12B Problems/Problem 17|Solution]]
 
[[2004 AMC 12B Problems/Problem 17|Solution]]
  
 
== Problem 18 ==
 
== Problem 18 ==
 +
 +
Points <math>A</math> and <math>B</math> are on the parabola <math>y=4x^2+7x-1</math>, and the origin is the midpoint of <math>AB</math>. What is the length of <math>AB</math>?
 +
 +
<math>
 +
\mathrm{(A)}\ 2\sqrt5
 +
\qquad
 +
\mathrm{(B)}\ 5+\frac{\sqrt2}{2}
 +
\qquad
 +
\mathrm{(C)}\ 5+\sqrt2
 +
\qquad
 +
\mathrm{(D)}\ 7
 +
\qquad
 +
\mathrm{(E)}\ 5\sqrt2
 +
</math>
  
 
[[2004 AMC 12B Problems/Problem 18|Solution]]
 
[[2004 AMC 12B Problems/Problem 18|Solution]]
  
 
== Problem 19 ==
 
== Problem 19 ==
 +
 +
A truncated [[cone]] has horizontal bases with radii <math>18</math> and <math>2</math>. A [[sphere]] is tangent to the top, bottom, and lateral surface of the truncated cone. What is the [[radius]] of the sphere?
 +
 +
<math>\mathrm{(A)}\ 6
 +
\qquad\mathrm{(B)}\ 4\sqrt{5}
 +
\qquad\mathrm{(C)}\ 9
 +
\qquad\mathrm{(D)}\ 10
 +
\qquad\mathrm{(E)}\ 6\sqrt{3}</math>
 +
  
 
[[2004 AMC 12B Problems/Problem 19|Solution]]
 
[[2004 AMC 12B Problems/Problem 19|Solution]]
  
 
== Problem 20 ==
 
== Problem 20 ==
 +
Each face of a [[cube]] is painted either red or blue, each with probability <math>1/2</math>. The color of each face is determined independently. What is the probability that the painted cube can be placed on a horizontal surface so that the four vertical faces are all the same color?
 +
 +
<math>\textbf{(A)}\ \frac14 \qquad \textbf{(B)}\ \frac {5}{16} \qquad \textbf{(C)}\ \frac38 \qquad \textbf{(D)}\ \frac {7}{16} \qquad \textbf{(E)}\ \frac12</math>
  
 
[[2004 AMC 12B Problems/Problem 20|Solution]]
 
[[2004 AMC 12B Problems/Problem 20|Solution]]
  
 
== Problem 21 ==
 
== Problem 21 ==
 +
 +
The graph of <math>2x^2 + xy + 3y^2 - 11x - 20y + 40 = 0</math> is an ellipse in the first quadrant of the <math>xy</math>-plane. Let <math>a</math> and <math>b</math> be the maximum and minimum values of <math>\frac yx</math> over all points <math>(x,y)</math> on the ellipse. What is the value of <math>a+b</math>?
 +
 +
<math>\mathrm{(A)}\ 3
 +
\qquad\mathrm{(B)}\ \sqrt{10}
 +
\qquad\mathrm{(C)}\ \frac 72
 +
\qquad\mathrm{(D)}\ \frac 92
 +
\qquad\mathrm{(E)}\ 2\sqrt{14}</math>
 +
  
 
[[2004 AMC 12B Problems/Problem 21|Solution]]
 
[[2004 AMC 12B Problems/Problem 21|Solution]]
  
 
== Problem 22 ==
 
== Problem 22 ==
 +
 +
The square
 +
<center><math>
 +
\begin{tabular}{|c|c|c|} \hline 50 & \textit{b} & \textit{c} \\
 +
\hline \textit{d} & \textit{e} & \textit{f} \\
 +
\hline \textit{g} & \textit{h} & 2 \\
 +
\hline \end{tabular}
 +
</math></center>
 +
is a multiplicative magic square. That is, the product of the numbers in each row, column, and diagonal is the same. If all the entries are positive integers, what is the sum of the possible values of <math>g</math>?
 +
 +
<math>\textbf{(A)}\ 10 \qquad \textbf{(B)}\ 25 \qquad \textbf{(C)}\ 35 \qquad \textbf{(D)}\ 62 \qquad \textbf{(E)}\ 136</math>
  
 
[[2004 AMC 12B Problems/Problem 22|Solution]]
 
[[2004 AMC 12B Problems/Problem 22|Solution]]
  
 
== Problem 23 ==
 
== Problem 23 ==
 +
 +
The [[polynomial]] <math>x^3 - 2004 x^2 + mx + n</math> has [[integer]] coefficients and three distinct positive zeros. Exactly one of these is an integer, and it is the sum of the other two.  How many values of <math>n</math> are possible?
 +
 +
<math>\mathrm{(A)}\ 250,000
 +
\qquad\mathrm{(B)}\ 250,250
 +
\qquad\mathrm{(C)}\ 250,500
 +
\qquad\mathrm{(D)}\ 250,750
 +
\qquad\mathrm{(E)}\ 251,000</math>
  
 
[[2004 AMC 12B Problems/Problem 23|Solution]]
 
[[2004 AMC 12B Problems/Problem 23|Solution]]
  
 
== Problem 24 ==
 
== Problem 24 ==
 +
 +
In <math>\triangle ABC</math>, <math>AB = BC</math>, and <math>\overline{BD}</math> is an [[altitude]]. Point <math>E</math> is on the extension of <math>\overline{AC}</math> such that <math>BE = 10</math>. The values of <math>\tan \angle CBE</math>, <math>\tan \angle DBE</math>, and <math>\tan \angle ABE</math> form a [[geometric progression]], and the values of <math>\cot \angle DBE,</math> <math>\cot \angle CBE,</math> <math>\cot \angle DBC</math> form an [[arithmetic progression]]. What is the area of <math>\triangle ABC</math>?
 +
 +
<center><asy>
 +
size(120);
 +
defaultpen(0.7);
 +
pair A = (0,0), D = (5*2^.5/3,0), C = (10*2^.5/3,0), B = (5*2^.5/3,5*2^.5), E = (13*2^.5/3,0);
 +
draw(A--D--C--E--B--C--D--B--cycle);
 +
label("\(A\)",A,S);
 +
label("\(B\)",B,N);
 +
label("\(C\)",C,S);
 +
label("\(D\)",D,S);
 +
label("\(E\)",E,S);
 +
</asy></center>
 +
 +
<math>\mathrm{(A)}\ 16
 +
\qquad\mathrm{(B)}\ \frac {50}3
 +
\qquad\mathrm{(C)}\ 10\sqrt{3}
 +
\qquad\mathrm{(D)}\ 8\sqrt{5}
 +
\qquad\mathrm{(E)}\ 18</math>
 +
  
 
[[2004 AMC 12B Problems/Problem 24|Solution]]
 
[[2004 AMC 12B Problems/Problem 24|Solution]]
  
 
== Problem 25 ==
 
== Problem 25 ==
 +
 +
Given that <math>2^{2004}</math> is a <math>604</math>-[[digit]] number whose first digit is <math>1</math>, how many [[element]]s of the [[set]] <math>S = \{2^0,2^1,2^2,\ldots ,2^{2003}\}</math> have a first digit of <math>4</math>?
 +
 +
<math>\mathrm{(A)}\ 194
 +
\qquad\mathrm{(B)}\ 195
 +
\qquad\mathrm{(C)}\ 196
 +
\qquad\mathrm{(D)}\ 197
 +
\qquad\mathrm{(E)}\ 198</math>
 +
  
 
[[2004 AMC 12B Problems/Problem 25|Solution]]
 
[[2004 AMC 12B Problems/Problem 25|Solution]]
  
 
== See also ==
 
== See also ==
 +
 +
{{AMC12 box|year=2004|ab=B|before=[[2004 AMC 12A Problems]]|after=[[2005 AMC 12A Problems]]}}
 +
 
* [[AMC 12]]
 
* [[AMC 12]]
 
* [[AMC 12 Problems and Solutions]]
 
* [[AMC 12 Problems and Solutions]]
Line 147: Line 343:
 
* [http://www.artofproblemsolving.com/Community/AoPS_Y_MJ_Transcripts.php?mj_id=28 2004 AMC B Math Jam Transcript]
 
* [http://www.artofproblemsolving.com/Community/AoPS_Y_MJ_Transcripts.php?mj_id=28 2004 AMC B Math Jam Transcript]
 
* [[Mathematics competition resources]]
 
* [[Mathematics competition resources]]
 +
{{MAA Notice}}

Latest revision as of 12:03, 19 February 2020

2004 AMC 12B (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the test if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

At each basketball practice last week, Jenny made twice as many free throws as she made at the previous practice. At her fifth practice she made 48 free throws. How many free throws did she make at the first practice?

$(\mathrm {A}) 3\qquad (\mathrm {B}) 6 \qquad (\mathrm {C}) 9 \qquad (\mathrm {D}) 12 \qquad (\mathrm {E}) 15$

Solution

Problem 2

In the expression $c\cdot a^b-d$, the values of $a$, $b$, $c$, and $d$ are 0, 1, 2, and 3, although not necessarily in that order. What is the maximum possible value of the result?

$(\mathrm {A}) 5\qquad (\mathrm {B}) 6 \qquad (\mathrm {C}) 8 \qquad (\mathrm {D}) 9 \qquad (\mathrm {E}) 10$

Solution

Problem 3

If $x$ and $y$ are positive integers for which $2^x3^y=1296$, what is the value of $x+y$?

$(\mathrm {A}) 8\qquad (\mathrm {B}) 9 \qquad (\mathrm {C}) 10 \qquad (\mathrm {D}) 11 \qquad (\mathrm {E}) 12$

Solution

Problem 4

An integer $x$, with $10\leq x\leq 99$, is to be chosen. If all choices are equally likely, what is the probability that at least one digit of $x$ is a 7?

$(\mathrm {A}) \dfrac{1}{9} \qquad (\mathrm {B}) \dfrac{1}{5} \qquad (\mathrm {C}) \dfrac{19}{90} \qquad (\mathrm {D}) \dfrac{2}{9} \qquad (\mathrm {E}) \dfrac{1}{3}$

Solution

Problem 5

On a trip from the United States to Canada, Isabella took $d$ U.S. dollars. At the border she exchanged them all, receiving 10 Canadian dollars for every 7 U.S. dollars. After spending 60 Canadian dollars, she had $d$ Canadian dollars left. What is the sum of the digits of $d$?

$(\mathrm {A}) 5\qquad (\mathrm {B}) 6 \qquad (\mathrm {C}) 7 \qquad (\mathrm {D}) 8 \qquad (\mathrm {E}) 9$

Solution

Problem 6

Minneapolis-St. Paul International Airport is 8 miles southwest of downtown St. Paul and 10 miles southeast of downtown Minneapolis. Which of the following is closest to the number of miles between downtown St. Paul and downtown Minneapolis?

$(\mathrm {A}) 13\qquad (\mathrm {B}) 14 \qquad (\mathrm {C}) 15 \qquad (\mathrm {D}) 16 \qquad (\mathrm {E}) 17$

Solution

Problem 7

A square has sides of length 10, and a circle centered at one of its vertices has radius 10. What is the area of the union of the regions enclosed by the square and the circle?

$(\mathrm {A}) 200+25\pi \quad (\mathrm {B}) 100+75\pi \quad (\mathrm {C}) 75+100\pi \quad (\mathrm {D}) 100+100\pi \quad (\mathrm {E}) 100+125\pi$

Solution

Problem 8

A grocer makes a display of cans in which the top row has one can and each lower row has two more cans than the row above it. If the display contains 100 cans, how many rows does it contain?

$(\mathrm {A}) 5 \qquad (\mathrm {B}) 8 \qquad (\mathrm {C}) 9 \qquad (\mathrm {D}) 10 \qquad (\mathrm {E}) 11$

Solution

Problem 9

The point $(-3,2)$ is rotated $90^\circ$ clockwise around the origin to point $B$. Point $B$ is then reflected over the line $x=y$ to point $C$. What are the coordinates of $C$?

$\mathrm{(A)}\ (-3,-2) \qquad \mathrm{(B)}\ (-2,-3) \qquad \mathrm{(C)}\ (2,-3) \qquad \mathrm{(D)}\ (2,3) \qquad \mathrm{(E)}\ (3,2)$

Solution

Problem 10

An annulus is the region between two concentric circles. The concentric circles in the figure have radii $b$ and $c$, with $b>c$. Let $OX$ be a radius of the larger circle, let $XZ$ be tangent to the smaller circle at $Z$, and let $OY$ be the radius of the larger circle that contains $Z$. Let $a=XZ$, $d=YZ$, and $e=XY$. What is the area of the annulus?

[asy] import graph; unitsize(1.5cm); defaultpen(0.8); real r1=1.5, r2=2.5; pair O=(0,0); path inner=Circle(O,r1), outer=Circle(O,r2); pair Y=(0,r2), Z=(0,r1), X=intersectionpoint( Z--(Z+(10,0)), outer ); filldraw(outer,lightgray,black); filldraw(inner,white,black); draw(X--O--Y); draw(Y--X--Z); label("$O$",O,SW); label("$X$",X,E); label("$Y$",Y,N); label("$Z$",Z,SW); label("$a$",X--Z,N); label("$b$",0.25*X,SE); label("$c$",O--Z,E); label("$d$",Y--Z,W); label("$e$",Y*0.65 + X*0.35,SW); defaultpen(0.5); dot(O); dot(X); dot(Z); dot(Y); [/asy]

$\mathrm{(A) \ } \pi a^2 \qquad \mathrm{(B) \ } \pi b^2 \qquad \mathrm{(C) \ } \pi c^2 \qquad \mathrm{(D) \ } \pi d^2 \qquad \mathrm{(E) \ } \pi e^2$

Solution

Problem 11

All the students in an algebra class took a $100$-point test. Five students scored $100$, each student scored at least $60$, and the mean score was $76$. What is the smallest possible number of students in the class?

$\mathrm{(A)}\ 10 \qquad \mathrm{(B)}\ 11 \qquad \mathrm{(C)}\ 12 \qquad \mathrm{(D)}\ 13 \qquad \mathrm{(E)}\ 14$

Solution

Problem 12

In the sequence $2001$, $2002$, $2003$, $\ldots$ , each term after the third is found by subtracting the previous term from the sum of the two terms that precede that term. For example, the fourth term is $2001 + 2002 - 2003 = 2000$. What is the $2004^\textrm{th}$ term in this sequence?

$\mathrm{(A) \ } -2004 \qquad \mathrm{(B) \ } -2 \qquad \mathrm{(C) \ } 0 \qquad \mathrm{(D) \ } 4003 \qquad \mathrm{(E) \ } 6007$

Solution

Problem 13

If $f(x) = ax+b$ and $f^{-1}(x) = bx+a$ with $a$ and $b$ real, what is the value of $a+b$?

$\mathrm{(A)}\ -2 \qquad\mathrm{(B)}\ -1 \qquad\mathrm{(C)}\ 0 \qquad\mathrm{(D)}\ 1 \qquad\mathrm{(E)}\ 2$


Solution

Problem 14

In $\triangle ABC$, $AB=13$, $AC=5$, and $BC=12$. Points $M$ and $N$ lie on $AC$ and $BC$, respectively, with $CM=CN=4$. Points $J$ and $K$ are on $AB$ so that $MJ$ and $NK$ are perpendicular to $AB$. What is the area of pentagon $CMJKN$?

[asy] unitsize(0.5cm); defaultpen(0.8); pair C=(0,0), A=(0,5), B=(12,0), M=(0,4), N=(4,0); pair J=intersectionpoint(A--B, M--(M+rotate(90)*(B-A)) ); pair K=intersectionpoint(A--B, N--(N+rotate(90)*(B-A)) ); draw( A--B--C--cycle ); draw( M--J ); draw( N--K ); label("$A$",A,NW); label("$B$",B,SE); label("$C$",C,SW); label("$M$",M,SW); label("$N$",N,S); label("$J$",J,NE); label("$K$",K,NE); [/asy]

$\mathrm{(A)}\ 15 \qquad \mathrm{(B)}\ \frac{81}{5} \qquad \mathrm{(C)}\ \frac{205}{12} \qquad \mathrm{(D)}\ \frac{240}{13} \qquad \mathrm{(E)}\ 20$

Solution

Problem 15

The two digits in Jack's age are the same as the digits in Bill's age, but in reverse order. In five years Jack will be twice as old as Bill will be then. What is the difference in their current ages?

$\mathrm{(A) \ } 9 \qquad \mathrm{(B) \ } 18 \qquad \mathrm{(C) \ } 27 \qquad \mathrm{(D) \ } 36\qquad \mathrm{(E) \ } 45$

Solution

Problem 16

A function $f$ is defined by $f(z) = i\overline{z}$, where $i=\sqrt{-1}$ and $\overline{z}$ is the complex conjugate of $z$. How many values of $z$ satisfy both $|z| = 5$ and $f(z) = z$?

$\mathrm{(A)}\ 0 \qquad\mathrm{(B)}\ 1 \qquad\mathrm{(C)}\ 2  \qquad\mathrm{(D)}\ 4 \qquad\mathrm{(E)}\ 8$


Solution

Problem 17

For some real numbers $a$ and $b$, the equation \[8x^3 + 4ax^2 + 2bx + a = 0\] has three distinct positive roots. If the sum of the base-$2$ logarithms of the roots is $5$, what is the value of $a$?

$\mathrm{(A)}\ -256 \qquad\mathrm{(B)}\ -64  \qquad\mathrm{(C)}\ -8 \qquad\mathrm{(D)}\ 64  \qquad\mathrm{(E)}\ 256$


Solution

Problem 18

Points $A$ and $B$ are on the parabola $y=4x^2+7x-1$, and the origin is the midpoint of $AB$. What is the length of $AB$?

$\mathrm{(A)}\ 2\sqrt5 \qquad \mathrm{(B)}\ 5+\frac{\sqrt2}{2} \qquad \mathrm{(C)}\ 5+\sqrt2 \qquad \mathrm{(D)}\ 7 \qquad \mathrm{(E)}\ 5\sqrt2$

Solution

Problem 19

A truncated cone has horizontal bases with radii $18$ and $2$. A sphere is tangent to the top, bottom, and lateral surface of the truncated cone. What is the radius of the sphere?

$\mathrm{(A)}\ 6 \qquad\mathrm{(B)}\ 4\sqrt{5} \qquad\mathrm{(C)}\ 9 \qquad\mathrm{(D)}\ 10 \qquad\mathrm{(E)}\ 6\sqrt{3}$


Solution

Problem 20

Each face of a cube is painted either red or blue, each with probability $1/2$. The color of each face is determined independently. What is the probability that the painted cube can be placed on a horizontal surface so that the four vertical faces are all the same color?

$\textbf{(A)}\ \frac14 \qquad \textbf{(B)}\ \frac {5}{16} \qquad \textbf{(C)}\ \frac38 \qquad \textbf{(D)}\ \frac {7}{16} \qquad \textbf{(E)}\ \frac12$

Solution

Problem 21

The graph of $2x^2 + xy + 3y^2 - 11x - 20y + 40 = 0$ is an ellipse in the first quadrant of the $xy$-plane. Let $a$ and $b$ be the maximum and minimum values of $\frac yx$ over all points $(x,y)$ on the ellipse. What is the value of $a+b$?

$\mathrm{(A)}\ 3 \qquad\mathrm{(B)}\ \sqrt{10} \qquad\mathrm{(C)}\ \frac 72 \qquad\mathrm{(D)}\ \frac 92 \qquad\mathrm{(E)}\ 2\sqrt{14}$


Solution

Problem 22

The square

$\begin{tabular}{|c|c|c|} \hline 50 & \textit{b} & \textit{c} \\ \hline \textit{d} & \textit{e} & \textit{f} \\ \hline \textit{g} & \textit{h} & 2 \\ \hline \end{tabular}$

is a multiplicative magic square. That is, the product of the numbers in each row, column, and diagonal is the same. If all the entries are positive integers, what is the sum of the possible values of $g$?

$\textbf{(A)}\ 10 \qquad \textbf{(B)}\ 25 \qquad \textbf{(C)}\ 35 \qquad \textbf{(D)}\ 62 \qquad \textbf{(E)}\ 136$

Solution

Problem 23

The polynomial $x^3 - 2004 x^2 + mx + n$ has integer coefficients and three distinct positive zeros. Exactly one of these is an integer, and it is the sum of the other two. How many values of $n$ are possible?

$\mathrm{(A)}\ 250,000 \qquad\mathrm{(B)}\ 250,250 \qquad\mathrm{(C)}\ 250,500 \qquad\mathrm{(D)}\ 250,750 \qquad\mathrm{(E)}\ 251,000$

Solution

Problem 24

In $\triangle ABC$, $AB = BC$, and $\overline{BD}$ is an altitude. Point $E$ is on the extension of $\overline{AC}$ such that $BE = 10$. The values of $\tan \angle CBE$, $\tan \angle DBE$, and $\tan \angle ABE$ form a geometric progression, and the values of $\cot \angle DBE,$ $\cot \angle CBE,$ $\cot \angle DBC$ form an arithmetic progression. What is the area of $\triangle ABC$?

[asy] size(120); defaultpen(0.7); pair A = (0,0), D = (5*2^.5/3,0), C = (10*2^.5/3,0), B = (5*2^.5/3,5*2^.5), E = (13*2^.5/3,0); draw(A--D--C--E--B--C--D--B--cycle); label("\(A\)",A,S); label("\(B\)",B,N); label("\(C\)",C,S); label("\(D\)",D,S); label("\(E\)",E,S); [/asy]

$\mathrm{(A)}\ 16 \qquad\mathrm{(B)}\ \frac {50}3 \qquad\mathrm{(C)}\ 10\sqrt{3} \qquad\mathrm{(D)}\ 8\sqrt{5} \qquad\mathrm{(E)}\ 18$


Solution

Problem 25

Given that $2^{2004}$ is a $604$-digit number whose first digit is $1$, how many elements of the set $S = \{2^0,2^1,2^2,\ldots ,2^{2003}\}$ have a first digit of $4$?

$\mathrm{(A)}\ 194 \qquad\mathrm{(B)}\ 195 \qquad\mathrm{(C)}\ 196 \qquad\mathrm{(D)}\ 197 \qquad\mathrm{(E)}\ 198$


Solution

See also

2004 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
2004 AMC 12A Problems
Followed by
2005 AMC 12A Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png