Difference between revisions of "1997 PMWC Problems/Problem T1"
(New page: ==Problem== Let <math>PQR</math> be an equilateral triangle with sides of length three units. <math>U</math>, <math>V</math>, <math>W</math>, <math>X</math>, <math>Y</math>, and <math>Z</m...) |
(→Problem) |
||
(2 intermediate revisions by one other user not shown) | |||
Line 2: | Line 2: | ||
Let <math>PQR</math> be an equilateral triangle with sides of length three units. <math>U</math>, <math>V</math>, <math>W</math>, <math>X</math>, <math>Y</math>, and <math>Z</math> divide the sides into lengths of one unit. Find the ratio of the area of the shaded quadrilateral <math>UWXY</math> to the area of the triangle <math>PQR</math>. | Let <math>PQR</math> be an equilateral triangle with sides of length three units. <math>U</math>, <math>V</math>, <math>W</math>, <math>X</math>, <math>Y</math>, and <math>Z</math> divide the sides into lengths of one unit. Find the ratio of the area of the shaded quadrilateral <math>UWXY</math> to the area of the triangle <math>PQR</math>. | ||
− | + | <asy> | |
+ | draw((1/2,0)--(-1/2,0)--(0,sqrt(3)/2)--cycle); | ||
+ | dot((1/6,sqrt(3)/3)); | ||
+ | dot((-1/6,sqrt(3)/3)); | ||
+ | dot((1/3,sqrt(3)/6)); | ||
+ | dot((-1/3,sqrt(3)/6)); | ||
+ | dot((1/6,0)); | ||
+ | dot((1/6,0)); | ||
+ | dot((-1/6,0)); | ||
+ | filldraw((-1/6,sqrt(3)/3)--(1/3,sqrt(3)/6)--(1/6,0)--(-1/6,0)--cycle); | ||
+ | label("$P$",(0,sqrt(3)/2),N); | ||
+ | label("$Z$",(1/6,sqrt(3)/3),NE); | ||
+ | label("$Y$",(1/3,sqrt(3)/6),NE); | ||
+ | label("$R$",(1/2,0),E); | ||
+ | label("$X$",(1/6,0),S); | ||
+ | label("$W$",(-1/6,0),S); | ||
+ | label("$Q$",(-1/2,0),W); | ||
+ | label("$V$",(-1/3,sqrt(3)/6),NW); | ||
+ | label("$U$",(-1/6,sqrt(3)/3),NW); | ||
+ | //Credit to chezbgone2 for the diagram</asy> | ||
==Solution== | ==Solution== | ||
Triangles UWQ, PUY, UWX, and UXY are all right triangles with side lengths 1, <math>\sqrt{3}</math>, and 2. Thus <math>[UWXY]=\sqrt{3}</math> and <math>[PQR]=\frac{9}{4}\sqrt{3}</math>. <math>\frac{[UWXY]}{[PQR]}=\frac{1}{\frac{9}{4}}=\boxed{\frac{4}{9}}</math> | Triangles UWQ, PUY, UWX, and UXY are all right triangles with side lengths 1, <math>\sqrt{3}</math>, and 2. Thus <math>[UWXY]=\sqrt{3}</math> and <math>[PQR]=\frac{9}{4}\sqrt{3}</math>. <math>\frac{[UWXY]}{[PQR]}=\frac{1}{\frac{9}{4}}=\boxed{\frac{4}{9}}</math> | ||
− | ==See | + | ==See Also== |
+ | {{PMWC box|year=1997|num-b=I15|num-a=T2}} | ||
+ | |||
+ | [[Category:Introductory Geometry Problems]] |
Latest revision as of 13:38, 20 April 2014
Problem
Let be an equilateral triangle with sides of length three units. , , , , , and divide the sides into lengths of one unit. Find the ratio of the area of the shaded quadrilateral to the area of the triangle .
Solution
Triangles UWQ, PUY, UWX, and UXY are all right triangles with side lengths 1, , and 2. Thus and .
See Also
1997 PMWC (Problems) | ||
Preceded by Problem I15 |
Followed by Problem T2 | |
I: 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 T: 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 |