Difference between revisions of "Bezout's Lemma"

(New page: '''Bezout's Lemma''' states that if two integers <math>x</math> and <math>y</math> satisfy <math>gcd(x,y)=1</math>, then there exist integers <math>\alpha</math> and <math>\beta</math> suc...)
 
(Redirected because Bézout is spelled with an accent, and calling it a "lemma" is generally uncommon.)
(Tag: New redirect)
 
(17 intermediate revisions by 9 users not shown)
Line 1: Line 1:
'''Bezout's Lemma''' states that if two integers <math>x</math> and <math>y</math> satisfy <math>gcd(x,y)=1</math>, then there exist integers <math>\alpha</math> and <math>\beta</math> such that <math>x\alpha+y\beta=1</math>.
+
#REDIRECT[[Bézout's Identity]]
 
 
==Proof==
 
{{incomplete|proof}}
 
 
 
==See also==
 
[[Category:Number Theory]]
 
{{stub}}
 

Latest revision as of 12:34, 3 May 2023

Redirect to: