|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | '''Euler's phi function''' determines the number of integers less than a given positive integer that are [[relatively prime]] to that integer.
| + | #REDIRECT [[Euler's totient function]] |
− | | |
− | === Formulas ===
| |
− | | |
− | Given the [[prime factorization]] of <math>{n} = {p}_1^{e_1}{p}_2^{e_2} \cdots {p}_n^{e_n}</math>, then one formula for <math>\phi(n)</math> is <math> \phi(n) = n\left(1-\frac{1}{p_1}\right)\left(1-\frac{1}{p_2}\right) \cdots \left(1-\frac{1}{p_n}\right) </math>.
| |
− | | |
− | | |
− | | |
− | === Identities ===
| |
− | | |
− | For [[prime]] p, <math>\phi(p)=p-1</math>, because all numbers less than <math>{p}</math> are relatively prime to it.
| |
− | | |
− | For relatively prime <math>{a}, {b}</math>, <math> \phi{(a)}\phi{(b)} = \phi{(ab)} </math>.
| |
− | | |
− | === Other Names ===
| |
− | | |
− | * Totient Function
| |
− | * Euler's Totient Function
| |