|
|
Line 1: |
Line 1: |
− | ==Problem==
| + | #redirect [[2008 AMC 12A Problems/Problem 4]] |
− | Which of the following is equal to the product
| |
− | <cmath>\frac{8}{4}\cdot\frac{12}{8}\cdot\frac{16}{12}\cdot\cdots\cdot\frac{4n+4}{4n}\cdot\cdots\cdot\frac{2008}{2004}?</cmath>
| |
− | | |
− | <math>\mathrm{(A)}\ 251\qquad\mathrm{(B)}\ 502\qquad\mathrm{(C)}\ 1004\qquad\mathrm{(D)}\ 2008\qquad\mathrm{(E)}\ 4016</math>
| |
− | | |
− | ==Solution==
| |
− | Notice that everything cancels out except for <math>2008</math> in the numerator and <math>4</math> in the denominator.
| |
− | | |
− | Thus, the product is <math>\frac{2008}{4}=502</math>, and the answer is <math>\mathrm{(B)}</math>.
| |
− |
| |
− | ==See also==
| |
− | {{AMC10 box|year=2008|ab=A|num-b=4|num-a=6}}
| |