Difference between revisions of "2008 AMC 10B Problems/Problem 3"

(New page: ==Problem== Assume that <math>x</math> is a positive real number. Which is equivalent to <math>\sqrt[3]{x\sqrt{x}}</math>? <math>\mathrm{(A)}\ x^{1/6}\qquad\mathrm{(B)}\ x^{1/4}\q...)
 
(Solution 2)
 
(7 intermediate revisions by 4 users not shown)
Line 4: Line 4:
 
<math>\mathrm{(A)}\ x^{1/6}\qquad\mathrm{(B)}\ x^{1/4}\qquad\mathrm{(C)}\ x^{3/8}\qquad\mathrm{(D)}\ x^{1/2}\qquad\mathrm{(E)}\ x</math>
 
<math>\mathrm{(A)}\ x^{1/6}\qquad\mathrm{(B)}\ x^{1/4}\qquad\mathrm{(C)}\ x^{3/8}\qquad\mathrm{(D)}\ x^{1/2}\qquad\mathrm{(E)}\ x</math>
  
==Solution==
+
==Solution 1==
{{solution}}
+
<math>\sqrt[3]{x\sqrt{x}}=\sqrt[3]{\sqrt{x^3}}=\sqrt[6]{x^3}=x^{3/6}=x^{1/2}\ \boxed{(D)}</math>
 +
 
 +
==Solution 2==
 +
Let x = 64. Using substitution, <math>\sqrt[3]{64\sqrt{64}} = \sqrt[3]{64 \cdot 8} = \sqrt[3]{512} = 8 = \sqrt{64} = 64^\frac{1}{2} = x^\frac{1}{2}</math>, so the answer is <math> \boxed{\textbf{(D)}\ x^\frac{1}{2}}</math>
 +
 
 +
~idk12345678
  
 
==See also==
 
==See also==
 
{{AMC10 box|year=2008|ab=B|num-b=2|num-a=4}}
 
{{AMC10 box|year=2008|ab=B|num-b=2|num-a=4}}
 +
{{MAA Notice}}

Latest revision as of 11:54, 12 June 2024

Problem

Assume that $x$ is a positive real number. Which is equivalent to $\sqrt[3]{x\sqrt{x}}$?

$\mathrm{(A)}\ x^{1/6}\qquad\mathrm{(B)}\ x^{1/4}\qquad\mathrm{(C)}\ x^{3/8}\qquad\mathrm{(D)}\ x^{1/2}\qquad\mathrm{(E)}\ x$

Solution 1

$\sqrt[3]{x\sqrt{x}}=\sqrt[3]{\sqrt{x^3}}=\sqrt[6]{x^3}=x^{3/6}=x^{1/2}\ \boxed{(D)}$

Solution 2

Let x = 64. Using substitution, $\sqrt[3]{64\sqrt{64}} = \sqrt[3]{64 \cdot 8} = \sqrt[3]{512} = 8 = \sqrt{64} = 64^\frac{1}{2} = x^\frac{1}{2}$, so the answer is $\boxed{\textbf{(D)}\ x^\frac{1}{2}}$

~idk12345678

See also

2008 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png