Difference between revisions of "Mock AIME 3 Pre 2005 Problems/Problem 4"

(solution)
(Solution)
 
(3 intermediate revisions by 3 users not shown)
Line 2: Line 2:
 
<math>\zeta_1, \zeta_2,</math> and <math>\zeta_3</math> are [[complex number]]s such that
 
<math>\zeta_1, \zeta_2,</math> and <math>\zeta_3</math> are [[complex number]]s such that
  
<center><math>\begin{align*}\zeta_1+\zeta_2+\zeta_3&=1\\
+
<cmath>\zeta_1+\zeta_2+\zeta_3=1</cmath>
\zeta_1^2+\zeta_2^2+\zeta_3^2&=3\\
+
<cmath>\zeta_1^2+\zeta_2^2+\zeta_3^2=3</cmath>
\zeta_1^3+\zeta_2^3+\zeta_3^3&=7\end{align*}</math></center>
+
<cmath>\zeta_1^3+\zeta_2^3+\zeta_3^3=7</cmath>
  
 
Compute <math>\zeta_1^{7} + \zeta_2^{7} + \zeta_3^{7}</math>.
 
Compute <math>\zeta_1^{7} + \zeta_2^{7} + \zeta_3^{7}</math>.
Line 10: Line 10:
 
==Solution==
 
==Solution==
 
We let <math>e_1 = \zeta_1 + \zeta_2 + \zeta_3,\ e_2 = \zeta_1\zeta_2 + \zeta_2\zeta_3 + \zeta_3\zeta_1,\ e_3 = \zeta_1\zeta_2\zeta_3</math> (the [[elementary symmetric sums]]). Then, we can rewrite the above equations as
 
We let <math>e_1 = \zeta_1 + \zeta_2 + \zeta_3,\ e_2 = \zeta_1\zeta_2 + \zeta_2\zeta_3 + \zeta_3\zeta_1,\ e_3 = \zeta_1\zeta_2\zeta_3</math> (the [[elementary symmetric sums]]). Then, we can rewrite the above equations as
<center><math>\begin{align*}\zeta_1+\zeta_2+\zeta_3&=e_1 = 1\\
+
<cmath>\zeta_1+\zeta_2+\zeta_3=e_1 = 1</cmath>
\zeta_1^2+\zeta_2^2+\zeta_3^2&= e_1^2 - 2e_2 = 3</math></center>
+
<cmath>\zeta_1^2+\zeta_2^2+\zeta_3^2= e_1^2 - 2e_2 = 3</cmath>
 
from where it follows that <math>e_2 = -1</math>. The third equation can be factored as  
 
from where it follows that <math>e_2 = -1</math>. The third equation can be factored as  
<center><math>\begin{align*}7 =\zeta_1^3+\zeta_2^3+\zeta_3^3 &= (\zeta_1+\zeta_2+\zeta_3)(\zeta_1^2+\zeta_2^2+\zeta_3^2-\zeta_1\zeta_2-\zeta_2\zeta_3 -\zeta_3\zeta_1)+3\zeta_1\zeta_2\zeta_3\\ &= e_1^3 - 3e_1e_2 + 3e_3,</math></center>
+
<cmath>7 =\zeta_1^3+\zeta_2^3+\zeta_3^3 = (\zeta_1+\zeta_2+\zeta_3)(\zeta_1^2+\zeta_2^2+\zeta_3^2-\zeta_1\zeta_2-\zeta_2\zeta_3 -\zeta_3\zeta_1)+3\zeta_1\zeta_2\zeta_3\\ = e_1^3 - 3e_1e_2 + 3e_3,</cmath>
 
from where it follows that <math>e_3 = 1</math>. Thus, applying [[Vieta's formulas]] backwards, <math>\zeta_1, \zeta_2,</math> and <math>\zeta_3</math> are the roots of the polynomial
 
from where it follows that <math>e_3 = 1</math>. Thus, applying [[Vieta's formulas]] backwards, <math>\zeta_1, \zeta_2,</math> and <math>\zeta_3</math> are the roots of the polynomial
<center><math>\begin{align}x^3 - x^2 - x - 1 = 0 \Longleftrightarrow x^3 = x^2 + x + 1\end{align}</math></center>
+
<cmath>x^3 - x^2 - x - 1 = 0 \Longleftrightarrow x^3 = x^2 + x + 1</cmath>
 
Let <math>s_n = \zeta_1^n + \zeta_2^n + \zeta_3^n</math> (the [[power sums]]). Then from <math>(1)</math>, we have the [[recursion]] <math>s_{n+3} = s_{n+2} + s_{n+1} + s_n</math>. It follows that <math>s_4 = 7 + 3 + 1 = 11, s_5 = 21, s_6 = 39, s_7 = \boxed{071}</math>.
 
Let <math>s_n = \zeta_1^n + \zeta_2^n + \zeta_3^n</math> (the [[power sums]]). Then from <math>(1)</math>, we have the [[recursion]] <math>s_{n+3} = s_{n+2} + s_{n+1} + s_n</math>. It follows that <math>s_4 = 7 + 3 + 1 = 11, s_5 = 21, s_6 = 39, s_7 = \boxed{071}</math>.
  
==See also==
+
==See Also==
 
{{Mock AIME box|year=Pre 2005|n=3|num-b=3|num-a=5}}
 
{{Mock AIME box|year=Pre 2005|n=3|num-b=3|num-a=5}}
  
 
[[Category:Intermediate Algebra Problems]]
 
[[Category:Intermediate Algebra Problems]]

Latest revision as of 01:49, 19 March 2015

Problem

$\zeta_1, \zeta_2,$ and $\zeta_3$ are complex numbers such that

\[\zeta_1+\zeta_2+\zeta_3=1\] \[\zeta_1^2+\zeta_2^2+\zeta_3^2=3\] \[\zeta_1^3+\zeta_2^3+\zeta_3^3=7\]

Compute $\zeta_1^{7} + \zeta_2^{7} + \zeta_3^{7}$.

Solution

We let $e_1 = \zeta_1 + \zeta_2 + \zeta_3,\ e_2 = \zeta_1\zeta_2 + \zeta_2\zeta_3 + \zeta_3\zeta_1,\ e_3 = \zeta_1\zeta_2\zeta_3$ (the elementary symmetric sums). Then, we can rewrite the above equations as \[\zeta_1+\zeta_2+\zeta_3=e_1 = 1\] \[\zeta_1^2+\zeta_2^2+\zeta_3^2= e_1^2 - 2e_2 = 3\] from where it follows that $e_2 = -1$. The third equation can be factored as \[7 =\zeta_1^3+\zeta_2^3+\zeta_3^3 = (\zeta_1+\zeta_2+\zeta_3)(\zeta_1^2+\zeta_2^2+\zeta_3^2-\zeta_1\zeta_2-\zeta_2\zeta_3 -\zeta_3\zeta_1)+3\zeta_1\zeta_2\zeta_3\\ = e_1^3 - 3e_1e_2 + 3e_3,\] from where it follows that $e_3 = 1$. Thus, applying Vieta's formulas backwards, $\zeta_1, \zeta_2,$ and $\zeta_3$ are the roots of the polynomial \[x^3 - x^2 - x - 1 = 0 \Longleftrightarrow x^3 = x^2 + x + 1\] Let $s_n = \zeta_1^n + \zeta_2^n + \zeta_3^n$ (the power sums). Then from $(1)$, we have the recursion $s_{n+3} = s_{n+2} + s_{n+1} + s_n$. It follows that $s_4 = 7 + 3 + 1 = 11, s_5 = 21, s_6 = 39, s_7 = \boxed{071}$.

See Also

Mock AIME 3 Pre 2005 (Problems, Source)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15