Difference between revisions of "2019 AIME I Problems/Problem 13"
(→Solution 2) |
m (Tag: Undo) |
||
Line 1: | Line 1: | ||
− | ==Problem== | + | == Problem == |
+ | |||
Triangle <math>ABC</math> has side lengths <math>AB=4</math>, <math>BC=5</math>, and <math>CA=6</math>. Points <math>D</math> and <math>E</math> are on ray <math>AB</math> with <math>AB<AD<AE</math>. The point <math>F \neq C</math> is a point of intersection of the circumcircles of <math>\triangle ACD</math> and <math>\triangle EBC</math> satisfying <math>DF=2</math> and <math>EF=7</math>. Then <math>BE</math> can be expressed as <math>\tfrac{a+b\sqrt{c}}{d}</math>, where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are positive integers such that <math>a</math> and <math>d</math> are relatively prime, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c+d</math>. | Triangle <math>ABC</math> has side lengths <math>AB=4</math>, <math>BC=5</math>, and <math>CA=6</math>. Points <math>D</math> and <math>E</math> are on ray <math>AB</math> with <math>AB<AD<AE</math>. The point <math>F \neq C</math> is a point of intersection of the circumcircles of <math>\triangle ACD</math> and <math>\triangle EBC</math> satisfying <math>DF=2</math> and <math>EF=7</math>. Then <math>BE</math> can be expressed as <math>\tfrac{a+b\sqrt{c}}{d}</math>, where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are positive integers such that <math>a</math> and <math>d</math> are relatively prime, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c+d</math>. | ||
Line 55: | Line 56: | ||
Let <math>G</math> be the intersection of segment <math>\overline{AE}</math> and <math>\overline{CF}</math>. Using Power of a Point with respect to <math>G</math> within <math>\omega_1</math>, we find that <math>AG \cdot GD = CG \cdot GF</math>. We can also apply Power of a Point with respect to <math>G</math> within <math>\omega_2</math> to find that <math>CG \cdot GF = BG \cdot GE</math>. Therefore, <math>AG \cdot GD = BG \cdot GE</math>. | Let <math>G</math> be the intersection of segment <math>\overline{AE}</math> and <math>\overline{CF}</math>. Using Power of a Point with respect to <math>G</math> within <math>\omega_1</math>, we find that <math>AG \cdot GD = CG \cdot GF</math>. We can also apply Power of a Point with respect to <math>G</math> within <math>\omega_2</math> to find that <math>CG \cdot GF = BG \cdot GE</math>. Therefore, <math>AG \cdot GD = BG \cdot GE</math>. | ||
− | < | + | <cmath>AG \cdot GD = BG \cdot GE</cmath> |
− | + | <cmath>(AB + BG) \cdot GD = BG \cdot (GD + DE)</cmath> | |
− | < | + | <cmath>AB \cdot GD + BG \cdot GD = BG \cdot GD + BG \cdot DE</cmath> |
− | + | <cmath>AB \cdot GD = BG \cdot DE</cmath> | |
− | < | + | <cmath>4 \cdot GD = BG \cdot 4\sqrt{2}</cmath> |
− | + | <math></math>GD = BG \cdot \sqrt{2}<math> | |
− | < | ||
− | + | Note that </math>\triangle GAC<math> is similar to </math>\triangle GFD<math>. </math>GF = \frac{BG + 4}{3}<math>. Also note that </math>\triangle GBC<math> is similar to </math>\triangle GFE<math>, which gives us </math>GF = \frac{7 \cdot BG}{5}<math>. Solving this system of linear equations, we get </math>BG = \frac{5}{4}<math>. Now, we can solve for </math>BE<math>, which is equal to </math>BG(\sqrt{2} + 1) + 4\sqrt{2}<math>. This simplifies to </math>\frac{5 + 21\sqrt{2}}{4}<math>, which means our answer is </math>\boxed{032}<math>. | |
− | |||
− | |||
− | |||
− | Note that <math>\triangle GAC< | ||
==Solution 3== | ==Solution 3== | ||
− | Construct <math>FC< | + | Construct </math>FC<math> and let </math>FC\cap AE=K<math>. Let </math>FK=x<math>. Using </math>\triangle FKE\sim \triangle BKC<math>, <cmath>BK=\frac{5}{7}x</cmath> Using </math>\triangle FDK\sim ACK<math>, it can be found that <cmath>3x=AK=4+\frac{5}{7}x\to x=\frac{7}{4}</cmath> This also means that </math>BK=\frac{21}{4}-4=\frac{5}{4}<math>. It suffices to find </math>KE<math>. It is easy to see the following: <cmath>180-\angle ABC=\angle KBC=\angle KFE</cmath> Using reverse Law of Cosines on </math>\triangle ABC<math>, </math>\cos{\angle ABC}=\frac{1}{8}\to \cos{180-\angle ABC}=\frac{-1}{8}<math>. Using Law of Cosines on </math>\triangle EFK<math> gives </math>KE=\frac{21\sqrt 2}{4}<math>, so </math>BE=\frac{5+21\sqrt 2}{4}\to \boxed{\textbf{032}}<math>. |
-franchester | -franchester | ||
==Solution 4 (No <C = <DFE, no LoC)== | ==Solution 4 (No <C = <DFE, no LoC)== | ||
− | Let <math>P=AE\cap CF< | + | Let </math>P=AE\cap CF<math>. Let </math>CP=5x<math> and </math>BP=5y<math>; from </math>\triangle{CBP}\sim\triangle{EFP}<math> we have </math>EP=7x<math> and </math>FP=7y<math>. From </math>\triangle{CAP}\sim\triangle{DFP}<math> we have </math>\frac{6}{4+5y}=\frac{2}{7y}<math> giving </math>y=\frac{1}{4}<math>. So </math>BP=\frac{5}{4}<math> and </math>FP=\frac{7}{4}<math>. These similar triangles also gives us </math>DP=\frac{5}{3}x<math> so </math>DE=\frac{16}{3}x<math>. Now, Stewart's Theorem on </math>\triangle{FEP}<math> and cevian </math>FD<math> tells us that <cmath>\frac{560}{9}x^3+28x=\frac{49}{3}x+\frac{245}{3}x,</cmath>so </math>x=\frac{3\sqrt{2}}{4}<math>. Then </math>BE=\frac{5}{4}+7x=\frac{5+21\sqrt{2}}{4}<math> so the answer is </math>\boxed{032}<math> as desired. (Solution by Trumpeter, but not added to the Wiki by Trumpeter) |
==Solution 5== | ==Solution 5== | ||
− | Connect <math>CF< | + | Connect </math>CF<math> meeting </math>AE<math> at </math>J<math>. We can observe that </math>\triangle{ACJ}\sim \triangle{FJD}<math> Getting that </math>\frac{AJ}{FJ}=\frac{AC}{FD}=3<math>. We can also observe that </math>\triangle{CBJ}\sim \triangle{EFJ}<math>, getting that </math>\frac{CB}{EF}=\frac{BJ}{FJ}=\frac{CJ}{EJ}=\frac{5}{7}<math> |
− | Assume that <math>BJ=5x;FJ=7x< | + | Assume that </math>BJ=5x;FJ=7x<math>, since </math>\frac{AJ}{FJ}=3<math>, we can get that </math>\frac{AJ}{FJ}=\frac{AB+BJ}{FJ}=\frac{4+5x}{7x}=3<math>, getting that </math>x=\frac{1}{4}; BJ=\frac{5}{4}; FJ=\frac{7}{4}<math> |
− | Using Power of Point, we can get that <math>BJ * EJ=CJ*FJ; DJ * AJ=CJ * FJ< | + | Using Power of Point, we can get that </math>BJ * EJ=CJ*FJ; DJ * AJ=CJ * FJ<math> Assume that </math>DJ=5k,CJ=15k<math>, getting that </math>JE=21k, DE=16k<math> |
− | Now applying Law of Cosine on two triangles, <math>\triangle{ACJ};\triangle{FJE}< | + | Now applying Law of Cosine on two triangles, </math>\triangle{ACJ};\triangle{FJE}<math> separately, we can get two equations |
− | <math>(1): (15k)^2+(\frac{21}{4})^2-2*15k *\frac{21}{4} * cos\angle{CJA}=36< | + | </math>(1): (15k)^2+(\frac{21}{4})^2-2*15k *\frac{21}{4} * cos\angle{CJA}=36<math> |
− | <math>(2):(21k)^2+(\frac{7}{4})^2-2*\frac{7}{4} * 21k*cos\angle{FJE}=49< | + | </math>(2):(21k)^2+(\frac{7}{4})^2-2*\frac{7}{4} * 21k*cos\angle{FJE}=49<math> |
− | Since <math>\angle{CJA}=\angle{FJE}< | + | Since </math>\angle{CJA}=\angle{FJE}<math>, we can use </math>15(2)-7(1)<math> to eliminate the </math>cos<math> term |
− | Then we can get that <math>5040k^2=630< | + | Then we can get that </math>5040k^2=630<math>, getting </math>k=\frac{\sqrt{2}}{4}<math> |
− | <math>BE=21k=\frac{21\sqrt{2}}{4}; BJ=\frac{5}{4}< | + | </math>BE=21k=\frac{21\sqrt{2}}{4}; BJ=\frac{5}{4}<math>, so the desired answer is </math>\frac{21\sqrt{2}+5}{4}<math>, which leads to the answer </math>\boxed{032}<math> |
~bluesoul | ~bluesoul | ||
Line 99: | Line 95: | ||
==Solution 6== | ==Solution 6== | ||
− | + | First, let </math>AE<math> and </math>CF<math> intersect at </math>X<math>. Our motivation here is to introduce cyclic quadrilaterals and find useful relationships in terms of angles. Observe that | |
− | |||
− | First, let <math>AE< | ||
<cmath>\angle DFE = \angle XFE - \angle XFD = \angle CBE - \angle CAB = 180 - \angle ABC - \angle CAB = \angle BAC</cmath> | <cmath>\angle DFE = \angle XFE - \angle XFD = \angle CBE - \angle CAB = 180 - \angle ABC - \angle CAB = \angle BAC</cmath> | ||
− | By the so-called "Reverse Law of Cosines" on <math>\triangle ABC< | + | By the so-called "Reverse Law of Cosines" on </math>\triangle ABC<math> we have |
<cmath>\cos(\angle BAC) = \frac{4^2 - 5^2 - 6^2}{-2 \cdot 5 \cdot 6} = \frac{3}{4}</cmath> | <cmath>\cos(\angle BAC) = \frac{4^2 - 5^2 - 6^2}{-2 \cdot 5 \cdot 6} = \frac{3}{4}</cmath> | ||
− | Applying on <math>\triangle DFE< | + | Applying on </math>\triangle DFE<math> gives |
<cmath>DE^2 = 2^2 + 7^2 - 2 \cdot 2 \cdot 7 \cos(\angle DFE)</cmath> | <cmath>DE^2 = 2^2 + 7^2 - 2 \cdot 2 \cdot 7 \cos(\angle DFE)</cmath> | ||
<cmath>= 2^2 + 7^2 - 2 \cdot 2 \cdot 7 \cdot \frac{3}{4}</cmath> | <cmath>= 2^2 + 7^2 - 2 \cdot 2 \cdot 7 \cdot \frac{3}{4}</cmath> | ||
<cmath>=32</cmath> | <cmath>=32</cmath> | ||
− | So <math>DE = 4 \sqrt{2}< | + | So </math>DE = 4 \sqrt{2}<math>, now by our cyclic quadrilaterals again, we are motivated by the multiple appearances of similar triangles throughout the figure. We want some that are related to </math>BX<math> and </math>XD<math>, which are crucial lengths in the problem. Suppose </math>BX = r, XD = s<math> for simplicity. We have: |
− | <math>\ | + | </math>\bulletCharking 15:50, 28 February 2025 (EST)\triangle AXC \sim \triangle FXD<math> |
− | <math>\ | + | </math>\bulletCharking 15:50, 28 February 2025 (EST)\triangle BXC \sim \triangle FXE<math> |
So | So | ||
Line 119: | Line 113: | ||
<cmath>\implies \frac{4 + r}{r} = \frac{s + 4 \sqrt{2}}{s} = \frac{21}{5}</cmath> | <cmath>\implies \frac{4 + r}{r} = \frac{s + 4 \sqrt{2}}{s} = \frac{21}{5}</cmath> | ||
<cmath>\implies r = \frac{5}{4}, s = \frac{5 \sqrt{2}}{4}</cmath> | <cmath>\implies r = \frac{5}{4}, s = \frac{5 \sqrt{2}}{4}</cmath> | ||
− | So <math>BE = r + s + 4 \sqrt{2} = \frac{5 + 21 \sqrt{2}}{4}< | + | So </math>BE = r + s + 4 \sqrt{2} = \frac{5 + 21 \sqrt{2}}{4}<math>. The requested sum is </math>5 + 21 + 2 + 4 = \boxed{032}$. |
~CoolJupiter | ~CoolJupiter | ||
Line 128: | Line 122: | ||
~r00tsOfUnity | ~r00tsOfUnity | ||
− | ==See Also== | + | == See Also == |
+ | |||
{{AIME box|year=2019|n=I|num-b=12|num-a=14}} | {{AIME box|year=2019|n=I|num-b=12|num-a=14}} | ||
− | + | {{MAA Notice}} | |
[[Category:Intermediate Geometry Problems]] | [[Category:Intermediate Geometry Problems]] | ||
− |
Latest revision as of 15:51, 28 February 2025
Problem
Triangle has side lengths
,
, and
. Points
and
are on ray
with
. The point
is a point of intersection of the circumcircles of
and
satisfying
and
. Then
can be expressed as
, where
,
,
, and
are positive integers such that
and
are relatively prime, and
is not divisible by the square of any prime. Find
.
Solution 1
Notice that By the Law of Cosines,
Then,
Let
,
, and
. Then,
However, since
,
, but since
,
and the requested sum is
.
(Solution by TheUltimate123)
Solution 2
Define to be the circumcircle of
and
to be the circumcircle of
.
Because of exterior angles,
But because
is cyclic. In addition,
because
is cyclic. Therefore,
. But
, so
. Using Law of Cosines on
, we can figure out that
. Since
,
. We are given that
and
, so we can use Law of Cosines on
to find that
.
Let be the intersection of segment
and
. Using Power of a Point with respect to
within
, we find that
. We can also apply Power of a Point with respect to
within
to find that
. Therefore,
.
$$ (Error compiling LaTeX. Unknown error_msg)GD = BG \cdot \sqrt{2}
\triangle GAC
\triangle GFD
GF = \frac{BG + 4}{3}
\triangle GBC
\triangle GFE
GF = \frac{7 \cdot BG}{5}
BG = \frac{5}{4}
BE
BG(\sqrt{2} + 1) + 4\sqrt{2}
\frac{5 + 21\sqrt{2}}{4}
\boxed{032}$.
==Solution 3==
Construct$ (Error compiling LaTeX. Unknown error_msg)FCFC\cap AE=K
FK=x
\triangle FKE\sim \triangle BKC
\triangle FDK\sim ACK
BK=\frac{21}{4}-4=\frac{5}{4}
KE
\triangle ABC
\cos{\angle ABC}=\frac{1}{8}\to \cos{180-\angle ABC}=\frac{-1}{8}
\triangle EFK
KE=\frac{21\sqrt 2}{4}
BE=\frac{5+21\sqrt 2}{4}\to \boxed{\textbf{032}}$.
-franchester
==Solution 4 (No <C = <DFE, no LoC)==
Let$ (Error compiling LaTeX. Unknown error_msg)P=AE\cap CFCP=5x
BP=5y
\triangle{CBP}\sim\triangle{EFP}
EP=7x
FP=7y
\triangle{CAP}\sim\triangle{DFP}
\frac{6}{4+5y}=\frac{2}{7y}
y=\frac{1}{4}
BP=\frac{5}{4}
FP=\frac{7}{4}
DP=\frac{5}{3}x
DE=\frac{16}{3}x
\triangle{FEP}
FD
x=\frac{3\sqrt{2}}{4}
BE=\frac{5}{4}+7x=\frac{5+21\sqrt{2}}{4}
\boxed{032}$as desired. (Solution by Trumpeter, but not added to the Wiki by Trumpeter)
==Solution 5==
Connect$ (Error compiling LaTeX. Unknown error_msg)CFAE
J
\triangle{ACJ}\sim \triangle{FJD}
\frac{AJ}{FJ}=\frac{AC}{FD}=3
\triangle{CBJ}\sim \triangle{EFJ}
\frac{CB}{EF}=\frac{BJ}{FJ}=\frac{CJ}{EJ}=\frac{5}{7}
BJ=5x;FJ=7x
\frac{AJ}{FJ}=3
\frac{AJ}{FJ}=\frac{AB+BJ}{FJ}=\frac{4+5x}{7x}=3
x=\frac{1}{4}; BJ=\frac{5}{4}; FJ=\frac{7}{4}
BJ * EJ=CJ*FJ; DJ * AJ=CJ * FJ
DJ=5k,CJ=15k
JE=21k, DE=16k
\triangle{ACJ};\triangle{FJE}
(1): (15k)^2+(\frac{21}{4})^2-2*15k *\frac{21}{4} * cos\angle{CJA}=36$$ (Error compiling LaTeX. Unknown error_msg)(2):(21k)^2+(\frac{7}{4})^2-2*\frac{7}{4} * 21k*cos\angle{FJE}=49
\angle{CJA}=\angle{FJE}
15(2)-7(1)
cos$term
Then we can get that$ (Error compiling LaTeX. Unknown error_msg)5040k^2=630k=\frac{\sqrt{2}}{4}$$ (Error compiling LaTeX. Unknown error_msg)BE=21k=\frac{21\sqrt{2}}{4}; BJ=\frac{5}{4}
\frac{21\sqrt{2}+5}{4}
\boxed{032}$~bluesoul
==Solution 6==
First, let$ (Error compiling LaTeX. Unknown error_msg)AECF
X
\triangle ABC
\triangle DFE
DE = 4 \sqrt{2}
BX
XD
BX = r, XD = s
\bulletCharking 15:50, 28 February 2025 (EST)\triangle AXC \sim \triangle FXD$$ (Error compiling LaTeX. Unknown error_msg)\bulletCharking 15:50, 28 February 2025 (EST)\triangle BXC \sim \triangle FXE
BE = r + s + 4 \sqrt{2} = \frac{5 + 21 \sqrt{2}}{4}
5 + 21 + 2 + 4 = \boxed{032}$.
~CoolJupiter
Video Solution by MOP 2024
https://youtube.com/watch?v=B7rFw05AYQ0
~r00tsOfUnity
See Also
2019 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.