Difference between revisions of "2008 AIME I Problems/Problem 15"

m (Solution 1)
(Solution 2)
 
(25 intermediate revisions by 14 users not shown)
Line 1: Line 1:
 +
__TOC__
 +
 
== Problem ==
 
== Problem ==
A square piece of paper has sides of length 100. From each corner a wedge is cut in the following manner: at each corner, the two cuts for the wedge each start at a distance <math>\sqrt{17}</math> from the corner, and they meet on the diagonal at an angle of <math>60^{\circ}</math> (see the figure below). The paper is then folded up along the lines joining the vertices of adjacent cuts. When the two edges of a cut meet, they are taped together. The result is a paper tray whose sides are not at right angles to the base. The height of the tray, that is, the perpendicular distance between the plane of the base and the plane formed by the upped edges, can be written in the form <math>\sqrt[n]{m}</math>, where <math>m</math> and <math>n</math> are positive integers, <math>m<1000</math>, and <math>m</math> is not divisible by the <math>n</math>th power of any prime. Find <math>m+n</math>.
+
A square piece of paper has sides of length <math>100</math>. From each corner a wedge is cut in the following manner: at each corner, the two cuts for the wedge each start at a distance <math>\sqrt{17}</math> from the corner, and they meet on the diagonal at an angle of <math>60^{\circ}</math> (see the figure below). The paper is then folded up along the lines joining the vertices of adjacent cuts. When the two edges of a cut meet, they are taped together. The result is a paper tray whose sides are not at right angles to the base. The height of the tray, that is, the perpendicular distance between the plane of the base and the plane formed by the upper edges, can be written in the form <math>\sqrt[n]{m}</math>, where <math>m</math> and <math>n</math> are positive integers, <math>m<1000</math>, and <math>m</math> is not divisible by the <math>n</math>th power of any prime. Find <math>m+n</math>.
 
<center><asy>import cse5;
 
<center><asy>import cse5;
 
size(200);
 
size(200);
 
pathpen=black;
 
pathpen=black;
 
real s=sqrt(17);
 
real s=sqrt(17);
real r=(sqrt(51)+s)/(sqrt(2));
+
real r=(sqrt(51)+s)/sqrt(2);
 
D((0,2*s)--(0,0)--(2*s,0));
 
D((0,2*s)--(0,0)--(2*s,0));
D((0,s)--(r*dir(45)));
+
D((0,s)--r*dir(45)--(s,0));
D((s,0)--(r*dir(45)));
+
D((0,0)--r*dir(45));
D((0,0)--(r*dir(45)));
+
D((r*dir(45).x,2*s)--r*dir(45)--(2*s,r*dir(45).y));
D((r*dir(45))--((r*dir(45)).x,2*s));
 
D((r*dir(45))--(2*s,(r*dir(45)).y));
 
 
MP("30^\circ",r*dir(45)-(0.25,1),SW);
 
MP("30^\circ",r*dir(45)-(0.25,1),SW);
 
MP("30^\circ",r*dir(45)-(1,0.5),SW);
 
MP("30^\circ",r*dir(45)-(1,0.5),SW);
 
MP("\sqrt{17}",(0,s/2),W);
 
MP("\sqrt{17}",(0,s/2),W);
MP("\sqrt{17}",(s/2,0),S);</asy></center>
+
MP("\sqrt{17}",(s/2,0),S);
 +
MP("\mathrm{cut}",((0,s)+r*dir(45))/2,N);
 +
MP("\mathrm{cut}",((s,0)+r*dir(45))/2,E);
 +
MP("\mathrm{fold}",(r*dir(45).x,s+r/2*dir(45).y),E);
 +
MP("\mathrm{fold}",(s+r/2*dir(45).x,r*dir(45).y));</asy></center>
 +
 
 +
== Picture for Solutions ==
 +
(Used for the following solutions)
  
__TOC__
 
== Solution ==
 
 
<center><asy>
 
<center><asy>
import three; import math;
+
import three; import math; import cse5; import olympiad;
 
size(500);
 
size(500);
pathpen=black;
+
pathpen=blue;
 
real r = (51^0.5-17^0.5)/200, h=867^0.25/100;
 
real r = (51^0.5-17^0.5)/200, h=867^0.25/100;
 
triple A=(0,0,0),B=(1,0,0),C=(1,1,0),D=(0,1,0);
 
triple A=(0,0,0),B=(1,0,0),C=(1,1,0),D=(0,1,0);
 
triple F=B+(r,-r,h),G=(1,-r,h),H=(1+r,0,h),I=B+(0,0,h);
 
triple F=B+(r,-r,h),G=(1,-r,h),H=(1+r,0,h),I=B+(0,0,h);
D(B--F--H--cycle); D(B--F--G--cycle);
+
draw(B--F--H--cycle); draw(B--F--G--cycle);
D(G--I--H); D(B--I); D(A--B--C--D--cycle);
+
draw(G--I--H); draw(B--I); draw(A--B--C--D--cycle);
 
triple Fa=A+(-r,-r, h), Fc=C+(r,r, h), Fd=D+(-r,r, h);
 
triple Fa=A+(-r,-r, h), Fc=C+(r,r, h), Fd=D+(-r,r, h);
 
triple Ia = A+(0,0,h), Ic = C+(0,0,h), Id = D+(0,0,h);
 
triple Ia = A+(0,0,h), Ic = C+(0,0,h), Id = D+(0,0,h);
D(Ia--I--Ic); D(Fa--F--Fc--Fd--cycle);
+
draw(Ia--I--Ic); draw(Fa--F--Fc--Fd--cycle);
D(A--Fa); D(C--Fc); D(D--Fd);
+
draw(A--Fa); draw(C--Fc); draw(D--Fd);
 +
triple A1 = (F.x,F.y,0); real factor = 1/4;
 +
draw(F--A1--B); draw((A1+(F-A1)*factor)--(A1+(F-A1)*factor+(B-A1)*factor)--(A1+(B-A1)*factor));  
 
</asy></center>
 
</asy></center>
=== Solution 1 ===
+
 
 +
== Solution 1 ==
 
In the original picture, let <math>P</math> be the corner, and <math>M</math> and <math>N</math> be the two points whose distance is <math>\sqrt{17}</math> from <math>P</math>. Also, let <math>R</math> be the point where the two cuts intersect.
 
In the original picture, let <math>P</math> be the corner, and <math>M</math> and <math>N</math> be the two points whose distance is <math>\sqrt{17}</math> from <math>P</math>. Also, let <math>R</math> be the point where the two cuts intersect.
  
 
Using <math>\triangle{MNP}</math> (a 45-45-90 triangle), <math>MN=MP\sqrt{2}\quad\Longrightarrow\quad MN=\sqrt{34}</math>. <math>\triangle{MNR}</math> is [[equilateral triangle|equilateral]], so <math>MR = NR = \sqrt{34}</math>. (Alternatively, we could find this by the [[Law of Sines]].)
 
Using <math>\triangle{MNP}</math> (a 45-45-90 triangle), <math>MN=MP\sqrt{2}\quad\Longrightarrow\quad MN=\sqrt{34}</math>. <math>\triangle{MNR}</math> is [[equilateral triangle|equilateral]], so <math>MR = NR = \sqrt{34}</math>. (Alternatively, we could find this by the [[Law of Sines]].)
  
The length of the perpendicular from <math>P</math> to <math>MN</math> in <math>\triangle{MNP}</math> is <math>\frac{\sqrt{17}}{\sqrt{2}}</math>, and the length of the perpendicular from <math>R</math> to <math>MN</math> in <math>\traignel{MNR}</math> is <math>\frac{\sqrt{51}}{\sqrt{2}}</math>. Adding those two lengths, <math>PR=\frac{\sqrt{17}+\sqrt{51}}{\sqrt{2}}</math>. (Alternatively, we could have used that <math>\tan 15^{\circ} = \frac{\sqrt{6}-\sqrt{2}}{4}</math>.)
+
The length of the perpendicular from <math>P</math> to <math>MN</math> in <math>\triangle{MNP}</math> is <math>\frac{\sqrt{17}}{\sqrt{2}}</math>, and the length of the perpendicular from <math>R</math> to <math>MN</math> in <math>\triangle{MNR}</math> is <math>\frac{\sqrt{51}}{\sqrt{2}}</math>. Adding those two lengths, <math>PR=\frac{\sqrt{17}+\sqrt{51}}{\sqrt{2}}</math>. (Alternatively, we could have used that <math>\sin 75^{\circ} = \sin (30+45) = \frac{\sqrt{6}+\sqrt{2}}{4}</math>.)
  
Drop a [[perpendicular]] from <math>R</math> to line <math>MN</math> and let the intersection be <math>G</math>.
+
Drop a [[perpendicular]] from <math>R</math> to the side of the square containing <math>M</math> and let the intersection be <math>G</math>.
  
 
<cmath>
 
<cmath>
Line 46: Line 54:
 
MG=PG-PM&=\frac{\sqrt{17}+\sqrt{51}}{2}-\sqrt{17}=\frac{\sqrt{51}-\sqrt{17}}{2}\end{align*}</cmath>
 
MG=PG-PM&=\frac{\sqrt{17}+\sqrt{51}}{2}-\sqrt{17}=\frac{\sqrt{51}-\sqrt{17}}{2}\end{align*}</cmath>
  
<center><asy>import three; import math;
+
<center><asy>import cse5;
size(400);
+
size(200);
 
pathpen=black;
 
pathpen=black;
real r = (51^0.5-17^0.5)/200, h=867^0.25/100;
+
real s=sqrt(17), r=(sqrt(51)+s)/(sqrt(2));
triple B=(1,0,0),F=B+(r,-r,h),G=(1,-r,h),H=(1+r,0,h),I=B+(0,0,h);
+
pair P=(0,0), N=(0,sqrt(17)), M=(sqrt(17),0), R=r*dir(45), G=((sqrt(51)+sqrt(17))/2,0);
D(B--F--H--cycle); D(B--F--G--cycle); D(G--I--H); D(B--I);
+
D(2*N--P--2*M); D(N--R--M); D(P--R);
MP("\sqrt{34}",(F+B)/2,N);
+
D((R.x,2*N.y)--R--(2*M.x,R.y));
MP("\frac{\sqrt{51}-\sqrt{17}}{2}",(I+G)/2,N);
+
MP("30^\circ",R-(0.25,1),SW);
MP("\sqrt[4]{867}",(I+B)/2,E);
+
MP("30^\circ",R-(1,0.5),SW);
D(rightanglemark(G,I,B,0.05));
+
MP("\sqrt{17}",N/2,W);
D(rightanglemark(F,G,B,0.05));
+
MP("\sqrt{17}",M/2,S);
D(rightanglemark(F,H,I,0.05));
+
D(N--M,dashed);
 +
D(G--R,dashed);
 +
MP("P",P,SW); MP("N",N,SW); MP("M",M,SW); MP("R",R,NE);
 +
MP("G",G,SW);
 
</asy></center>
 
</asy></center>
  
Let <math>ABCD</math> be the smaller square base of the tray and let <math>A'B'C'D'</math> be the larger square, such that <math>AA'</math>, etc, are edges. Let <math>F</math> be the foot of the perpendicular from <math>A</math> to plane <math>A'B'C'D'</math>.
+
Let <math>A'B'C'D'</math> be the smaller square base of the tray and let <math>ABCD</math> be the larger square, such that <math>AA'</math>, etc, are edges. Let <math>F</math> be the foot of the perpendicular from <math>A</math> to plane <math>A'B'C'D'</math>.
  
We know <math>AA'=MR=\sqrt{34}</math> and <math>AB=MG\sqrt{2}=\frac{\sqrt{51}-\sqrt{17}}{\sqrt{2}}</math>. Now, use the Pythagorean Theorem on triangle <math>AFA'</math> to find <math>AF</math>:
+
We know <math>AA'=MR=\sqrt{34}</math> and <math>A'F=MG\sqrt{2}=\frac{\sqrt{51}-\sqrt{17}}{\sqrt{2}}</math>. Now, use the Pythagorean Theorem on triangle <math>AFA'</math> to find <math>AF</math>:
  
<cmath>\begin{align*}\left(\frac{\sqrt{51}-\sqrt{17}}{\sqrt{2}}\right)^2+AF^2&=\left(\sqrt{34}\right)^2\\
+
<cmath>\begin{align*}\left(\frac{\sqrt{51}-\sqrt{17}}{\sqrt{2}}\right)^2+AF^2&=\left(\sqrt{34}\right)^2\\ \frac{51-34\sqrt{3}+17}{2}+AF^2&=34\\AF&=\sqrt{34-\frac{68-34\sqrt{3}}{2}}\\AF&=\sqrt{\frac{34\sqrt{3}}{2}}\\AF&=\sqrt[4]{867}\end{align*}</cmath>
\frac{51-34\sqrt{3}+17}{2}+AF^2&=34\\
 
AF&=\sqrt{34-\frac{68-34\sqrt{3}}{2}}\\
 
AF&=\sqrt{\frac{34\sqrt{3}}{2}}\\
 
AF&=\sqrt[4]{867}\end{align*}</cmath>
 
  
 
The answer is <math>867 + 4 = \boxed{871}</math>.
 
The answer is <math>867 + 4 = \boxed{871}</math>.
  
=== Solution 2 ===
+
== Solution 2 ==
In the final pyramid, let <math>ABCD</math> be the smaller square and let <math>A'B'C'D'</math> be the larger square such that <math>AA'</math>, etc are edges. It is obvious from the diagram that <math>\angle A'AB = \angle A'AD = 105^\circ</math>. Let <math>AB</math> and <math>AD</math> be the positive <math>x</math> and <math>y</math> axes in a 3-d coordinate system such that <math>A'</math> has a positive <math>z</math> coordinate. Let <math>\alpha</math> be the angle made with the positive <math>x</math> axis. Define <math>\beta</math> and <math>\gamma</math> analogously. It is easy to see that if <math>P: = (x,y,z)</math>, then <math>x = AA'\cdot \cos\alpha</math>. Furthermore, this means that
+
In the final pyramid, let <math>ABCD</math> be the smaller square and let <math>A'B'C'D'</math> be the larger square such that <math>AA'</math>, etc. are edges.
<cmath>
+
 
\frac {x^2}{AA'^2} + \frac {y^2}{AA'^2} + \frac {z^2}{AA'^2} = \cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1
+
It is obvious from the diagram that <math>\angle A'AB = \angle A'AD = 105^\circ</math>.
</cmath>
+
 
We have that <math>\alpha = \beta = 105^\circ</math>, so
+
Let <math>AB</math> and <math>AD</math> be the positive <math>x</math> and <math>y</math> axes in a 3-d coordinate system such that <math>A'</math> has a positive <math>z</math> coordinate. Let <math>\alpha</math> be the angle made with the positive <math>x</math> [[axis]]. Define <math>\beta</math> and <math>\gamma</math> analogously.
<cmath>
+
 
\cos^2 105^\circ + \cos^2105^\circ + \cos^2\gamma = 1\implies \cos\gamma = \sqrt [4]{\frac {3}{4}}
+
It is easy to see that if <math>P: = (x,y,z)</math>, then <math>x = AA'\cdot \cos\alpha</math>. Furthermore, this means that <math>\frac {x^2}{AA'^2} + \frac {y^2}{AA'^2} + \frac {z^2}{AA'^2} = \cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1</math>.
</cmath>
+
 
It is easy to see from the law of sines that
+
We have that <math>\alpha = \beta = 105^\circ</math>, so <math>\cos^2 105^\circ + \cos^2105^\circ + \cos^2\gamma = 1\implies \cos\gamma = \sqrt [4]{\frac {3}{4}}</math>.
<cmath>
+
 
\frac {AA'}{\sin 45^\circ} = \frac {\sqrt {17}}{\sin 30^\circ}\implies AA' = \sqrt {34}
+
It is easy to see from the [[Law of Sines]] that <math>\frac {AA'}{\sin 45^\circ} = \frac {\sqrt {17}}{\sin 30^\circ}\implies AA' = \sqrt {34}</math>.
</cmath>
+
 
Now
+
Now, <math>z = AA'\cdot \cos\gamma = \sqrt [4]{34^2\cdot \frac {3}{4}} = \sqrt [4]{867}</math>.
<cmath>
+
 
z = AA'\cdot \cos\gamma = \sqrt [4]{34^2\cdot \frac {3}{4}} = \sqrt [4]{867}
+
It follows that the answer is <math>867 + 4 = \boxed{871}</math>.~Shen Kislay Kai
</cmath>
 
It follows that the answer is <math>867 + 4 = \boxed{871}</math>.
 
  
 
== See also ==
 
== See also ==
Line 95: Line 100:
  
 
[[Category:Intermediate Geometry Problems]]
 
[[Category:Intermediate Geometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 12:28, 3 September 2024

Problem

A square piece of paper has sides of length $100$. From each corner a wedge is cut in the following manner: at each corner, the two cuts for the wedge each start at a distance $\sqrt{17}$ from the corner, and they meet on the diagonal at an angle of $60^{\circ}$ (see the figure below). The paper is then folded up along the lines joining the vertices of adjacent cuts. When the two edges of a cut meet, they are taped together. The result is a paper tray whose sides are not at right angles to the base. The height of the tray, that is, the perpendicular distance between the plane of the base and the plane formed by the upper edges, can be written in the form $\sqrt[n]{m}$, where $m$ and $n$ are positive integers, $m<1000$, and $m$ is not divisible by the $n$th power of any prime. Find $m+n$.

[asy]import cse5; size(200); pathpen=black; real s=sqrt(17); real r=(sqrt(51)+s)/sqrt(2); D((0,2*s)--(0,0)--(2*s,0)); D((0,s)--r*dir(45)--(s,0)); D((0,0)--r*dir(45)); D((r*dir(45).x,2*s)--r*dir(45)--(2*s,r*dir(45).y)); MP("30^\circ",r*dir(45)-(0.25,1),SW); MP("30^\circ",r*dir(45)-(1,0.5),SW); MP("\sqrt{17}",(0,s/2),W); MP("\sqrt{17}",(s/2,0),S); MP("\mathrm{cut}",((0,s)+r*dir(45))/2,N); MP("\mathrm{cut}",((s,0)+r*dir(45))/2,E); MP("\mathrm{fold}",(r*dir(45).x,s+r/2*dir(45).y),E); MP("\mathrm{fold}",(s+r/2*dir(45).x,r*dir(45).y));[/asy]

Picture for Solutions

(Used for the following solutions)

[asy] import three; import math; import cse5; import olympiad; size(500); pathpen=blue; real r = (51^0.5-17^0.5)/200, h=867^0.25/100; triple A=(0,0,0),B=(1,0,0),C=(1,1,0),D=(0,1,0); triple F=B+(r,-r,h),G=(1,-r,h),H=(1+r,0,h),I=B+(0,0,h); draw(B--F--H--cycle); draw(B--F--G--cycle); draw(G--I--H); draw(B--I); draw(A--B--C--D--cycle); triple Fa=A+(-r,-r, h), Fc=C+(r,r, h), Fd=D+(-r,r, h); triple Ia = A+(0,0,h), Ic = C+(0,0,h), Id = D+(0,0,h); draw(Ia--I--Ic); draw(Fa--F--Fc--Fd--cycle); draw(A--Fa); draw(C--Fc); draw(D--Fd); triple A1 = (F.x,F.y,0); real factor = 1/4; draw(F--A1--B); draw((A1+(F-A1)*factor)--(A1+(F-A1)*factor+(B-A1)*factor)--(A1+(B-A1)*factor));  [/asy]

Solution 1

In the original picture, let $P$ be the corner, and $M$ and $N$ be the two points whose distance is $\sqrt{17}$ from $P$. Also, let $R$ be the point where the two cuts intersect.

Using $\triangle{MNP}$ (a 45-45-90 triangle), $MN=MP\sqrt{2}\quad\Longrightarrow\quad MN=\sqrt{34}$. $\triangle{MNR}$ is equilateral, so $MR = NR = \sqrt{34}$. (Alternatively, we could find this by the Law of Sines.)

The length of the perpendicular from $P$ to $MN$ in $\triangle{MNP}$ is $\frac{\sqrt{17}}{\sqrt{2}}$, and the length of the perpendicular from $R$ to $MN$ in $\triangle{MNR}$ is $\frac{\sqrt{51}}{\sqrt{2}}$. Adding those two lengths, $PR=\frac{\sqrt{17}+\sqrt{51}}{\sqrt{2}}$. (Alternatively, we could have used that $\sin 75^{\circ} = \sin (30+45) = \frac{\sqrt{6}+\sqrt{2}}{4}$.)

Drop a perpendicular from $R$ to the side of the square containing $M$ and let the intersection be $G$.

\begin{align*}PG&=\frac{PR}{\sqrt{2}}=\frac{\sqrt{17}+\sqrt{51}}{2}\\ MG=PG-PM&=\frac{\sqrt{17}+\sqrt{51}}{2}-\sqrt{17}=\frac{\sqrt{51}-\sqrt{17}}{2}\end{align*}

[asy]import cse5; size(200); pathpen=black; real s=sqrt(17), r=(sqrt(51)+s)/(sqrt(2)); pair P=(0,0), N=(0,sqrt(17)), M=(sqrt(17),0), R=r*dir(45), G=((sqrt(51)+sqrt(17))/2,0); D(2*N--P--2*M); D(N--R--M); D(P--R); D((R.x,2*N.y)--R--(2*M.x,R.y)); MP("30^\circ",R-(0.25,1),SW); MP("30^\circ",R-(1,0.5),SW); MP("\sqrt{17}",N/2,W); MP("\sqrt{17}",M/2,S); D(N--M,dashed); D(G--R,dashed); MP("P",P,SW); MP("N",N,SW); MP("M",M,SW); MP("R",R,NE); MP("G",G,SW); [/asy]

Let $A'B'C'D'$ be the smaller square base of the tray and let $ABCD$ be the larger square, such that $AA'$, etc, are edges. Let $F$ be the foot of the perpendicular from $A$ to plane $A'B'C'D'$.

We know $AA'=MR=\sqrt{34}$ and $A'F=MG\sqrt{2}=\frac{\sqrt{51}-\sqrt{17}}{\sqrt{2}}$. Now, use the Pythagorean Theorem on triangle $AFA'$ to find $AF$:

\begin{align*}\left(\frac{\sqrt{51}-\sqrt{17}}{\sqrt{2}}\right)^2+AF^2&=\left(\sqrt{34}\right)^2\\ \frac{51-34\sqrt{3}+17}{2}+AF^2&=34\\AF&=\sqrt{34-\frac{68-34\sqrt{3}}{2}}\\AF&=\sqrt{\frac{34\sqrt{3}}{2}}\\AF&=\sqrt[4]{867}\end{align*}

The answer is $867 + 4 = \boxed{871}$.

Solution 2

In the final pyramid, let $ABCD$ be the smaller square and let $A'B'C'D'$ be the larger square such that $AA'$, etc. are edges.

It is obvious from the diagram that $\angle A'AB = \angle A'AD = 105^\circ$.

Let $AB$ and $AD$ be the positive $x$ and $y$ axes in a 3-d coordinate system such that $A'$ has a positive $z$ coordinate. Let $\alpha$ be the angle made with the positive $x$ axis. Define $\beta$ and $\gamma$ analogously.

It is easy to see that if $P: = (x,y,z)$, then $x = AA'\cdot \cos\alpha$. Furthermore, this means that $\frac {x^2}{AA'^2} + \frac {y^2}{AA'^2} + \frac {z^2}{AA'^2} = \cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$.

We have that $\alpha = \beta = 105^\circ$, so $\cos^2 105^\circ + \cos^2105^\circ + \cos^2\gamma = 1\implies \cos\gamma = \sqrt [4]{\frac {3}{4}}$.

It is easy to see from the Law of Sines that $\frac {AA'}{\sin 45^\circ} = \frac {\sqrt {17}}{\sin 30^\circ}\implies AA' = \sqrt {34}$.

Now, $z = AA'\cdot \cos\gamma = \sqrt [4]{34^2\cdot \frac {3}{4}} = \sqrt [4]{867}$.

It follows that the answer is $867 + 4 = \boxed{871}$.~Shen Kislay Kai

See also

2008 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Last Question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png