Difference between revisions of "2006 AIME I Problems/Problem 1"

m (Undo revision 241945 by Charking(talk))
(Tag: Undo)
m (Formatting)
 
(One intermediate revision by the same user not shown)
Line 5: Line 5:
 
== Solution 1 ==
 
== Solution 1 ==
  
From the problem statement, we construct the following diagram:  
+
We construct the following diagram:  
<center><asy>
+
<asy>
pointpen = black; pathpen = black + linewidth(0.65);
+
pathpen = black;
pair C=(0,0), D=(0,-14),A=(-(961-196)^.5,0),B=IP(circle(C,21),circle(A,18));
+
pair C=(0,0),D=(0,-14),A=(-sqrt(765),0),B=IP(circle(C,21),circle(A,18));
D(MP("A",A,W)--MP("B",B,N)--MP("C",C,E)--MP("D",D,E)--A--C); D(rightanglemark(A,C,D,40)); D(rightanglemark(A,B,C,40));
+
D(MP("A",A,W)--MP("B",B,N)--MP("C",C,E)--MP("D",D,E)--A--C);
</asy></center><!-- Asymptote replacement for Image:Aime06i.1.PNG by joml88 -->
+
D(rightanglemark(A,C,D,40));
Using the [[Pythagorean Theorem]]:
+
D(rightanglemark(A,B,C,40));
 
+
</asy><!--Asymptote by joml88-->
<cmath>AD^2 = AC^2 + CD^2 </cmath>
+
Using the [[Pythagorean Theorem]], we get the following two equations:
<cmath>AC^2 = AB^2 + BC^2 </cmath>
+
<cmath>AD^2 = AC^2 + CD^2</cmath>
Substituting <math>AB^2 + BC^2</math> for <math>AC^2</math>:
+
<cmath>AC^2 = AB^2 + BC^2</cmath>
<cmath>AD^2 = AB^2 + BC^2 + CD^2</cmath>
+
Substituting <math>AB^2 + BC^2</math> for <math>AC^2</math> gives us <math>AD^2 = AB^2 + BC^2 + CD^2</math>. Plugging in the given information, we get <math>AD^2 = 18^2 + 21^2 + 14^2 = 961 \implies AD = 31</math>, so the perimeter is <math>AB+BC+CD+AD = 18+21+14+31 = \boxed{084}</math>.
Plugging in the given information:
 
<cmath>AD^2 = 18^2 + 21^2 + 14^2</cmath>
 
<cmath>AD^2 = 961</cmath>
 
<cmath>AD= 31</cmath>
 
So the perimeter is <math>18+21+14+31=84</math>, and the answer is <math>\boxed{084}</math>.
 
  
 
== See Also ==
 
== See Also ==

Latest revision as of 15:10, 3 February 2025

Problem

In quadrilateral $ABCD$, $\angle B$ is a right angle, diagonal $\overline{AC}$ is perpendicular to $\overline{CD}$, $AB=18$, $BC=21$, and $CD=14$. Find the perimeter of $ABCD$.

Solution 1

We construct the following diagram: [asy] pathpen = black; pair C=(0,0),D=(0,-14),A=(-sqrt(765),0),B=IP(circle(C,21),circle(A,18)); D(MP("A",A,W)--MP("B",B,N)--MP("C",C,E)--MP("D",D,E)--A--C); D(rightanglemark(A,C,D,40)); D(rightanglemark(A,B,C,40)); [/asy] Using the Pythagorean Theorem, we get the following two equations: \[AD^2 = AC^2 + CD^2\] \[AC^2 = AB^2 + BC^2\] Substituting $AB^2 + BC^2$ for $AC^2$ gives us $AD^2 = AB^2 + BC^2 + CD^2$. Plugging in the given information, we get $AD^2 = 18^2 + 21^2 + 14^2 = 961 \implies AD = 31$, so the perimeter is $AB+BC+CD+AD = 18+21+14+31 = \boxed{084}$.

See Also

2006 AIME I (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png